Giải bài 4.14 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức


Cho tứ giác ABCD,

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD, BC, AC.

a) Chứng minh EK // CD, FK // AB.

b) So sánh EF và \(\dfrac{1}{2}(AB + C{\rm{D}})\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a. Chứng minh EK là đường trung bình của tam giác ACD; FK là đường trung bình của tam giác ABC, suy ra EK // CD, FK // AB.

b. Áp dụng tính chất đường trung bình với EK và FK trong tam giác ACD, ABC. Áp dụng bất đẳng thức "Với ba điểm A, B, C bất kỳ, ta có AB + AC ≥ BC" suy ra đpcm.

 

Lời giải chi tiết

a) Vì E, K lần lượt là trung điểm của AD, AC nên EK là đường trung bình của tam giác ACD suy ra EK // CD.

Vì K, F lần lượt là trung điểm của AC, BC nên KF là đường trung bình của tam giác ABC suy ra KF // AB.

Vậy EK // CD, FK // AB.

b) Vì EK là đường trung bình của tam giác ACD nên \(EK = \dfrac{1}{2}C{\rm{D}}\);

Vì KF là đường trung bình của tam giác ABC nên \(KF = \dfrac{1}{2}AB\).

Do đó \(EK + KF = \dfrac{1}{2}(AB + C{\rm{D}})\)           (1)

Ta có: \(EF \le EK + KF\)          (2)

Từ (1) và (2) ta suy ra \(EF \le \dfrac{1}{2}(AB + C{\rm{D}})\).


Bình chọn:
4.5 trên 35 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí