Giải bài 4 trang 88 vở thực hành Toán 8 tập 2>
Cho tam giác ABC có AB = 12cm, AC = 15cm. Trên các tia AB, AC lần lượt lấy các điểm M, N sao cho AM = 10cm, AN = 8cm. Chứng minh rằng ΔABC ∽ ΔANM.
Đề bài
Cho tam giác ABC có AB = 12cm, AC = 15cm. Trên các tia AB, AC lần lượt lấy các điểm M, N sao cho AM = 10cm, AN = 8cm. Chứng minh rằng ΔABC ∽ ΔANM.
Phương pháp giải - Xem chi tiết
- Chứng minh: \(\frac{AN}{AB}=\frac{AM}{AC}\).
- Chứng minh hai tam giác ABC và tam giác ANM có hai cạnh tương ứng tỉ lệ và góc A chung nên hai tam giác ABC và tam giác ANM đồng dạng với nhau.
Lời giải chi tiết
Xét hai tam giác ABC và ANM, ta có: $\frac{AB}{AN}=\frac{AC}{AM}=\frac{3}{2}$; $\widehat{A}$ chung.
Vậy $\Delta ABC\backsim \Delta ANM(c.g.c)$.
- Giải bài 5 trang 88 vở thực hành Toán 8 tập 2
- Giải bài 6 trang 88 vở thực hành Toán 8 tập 2
- Giải bài 7 trang 89 vở thực hành Toán 8 tập 2
- Giải bài 8 trang 89 vở thực hành Toán 8 tập 2
- Giải bài 9 trang 89 vở thực hành Toán 8 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay