Giải bài 4 trang 49 vở thực hành Toán 8


Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I,

Đề bài

Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Phương pháp giải - Xem chi tiết

Chứng minh I và J cách đều đoạn thẳng AB => I, J nằm trên đường trung trực của AB hay đường thẳng IJ là đường trung trực của đoạn AB.

Lời giải chi tiết

Hình thang ABCD cân nên ta có \(\widehat {DAB} = \widehat {ABC},AD = BC,AC = BD.\)

Suy ra \(\widehat {{A_1}} = {180^0} - \widehat {DAB} = {180^0} - \widehat {ABC} = \widehat {{B_1}}\) nên tam giác IAB cân tại I, do đó IA = IB hay I cách đều đoạn thẳng AB.

Xét \(\Delta ABD = \Delta BAC\) (c.c.c), suy ra \(\widehat {{A_2}} = \widehat {{B_2}}\), nên tam giác JAB cân tại J, do đó JA = JB hay J cách đều đoạn thẳng AB.

Vậy I, J nằm trên đường trung trực của AB hay đường thẳng IJ là đường trung trực của đoạn AB.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí