Giải bài 4 trang 19 sách bài tập toán 8 - Chân trời sáng tạo


Rút gọn các phân thức sau: a) (frac{{6ab}}{{ - 4ac}});

Đề bài

Rút gọn các phân thức sau:

a) \(\frac{{6ab}}{{ - 4ac}}\);

b) \(\frac{{ - {a^4}b}}{{ - 2{a^2}{b^3}}}\);

c) \(\frac{{5a\left( {a - b} \right)}}{{10b\left( {b - a} \right)}}\);

d) \(\frac{{3a\left( {1 - a} \right)}}{{9{{\left( {a - 1} \right)}^2}}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức rút gọn phân thức để rút gọn: Để rút gọn một phân thức, ta thường thực hiện như sau:

+ Phân tích cả tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử vào mẫu cho nhân tử chung.

Lời giải chi tiết

a) \(\frac{{6ab}}{{ - 4ac}} = \frac{{3.2a.b}}{{ - 2.2a.c}} = \frac{{ - 3b}}{{2c}}\);

b) \(\frac{{ - {a^4}b}}{{ - 2{a^2}{b^3}}} = \frac{{ - {a^2}.{a^2}b}}{{ - 2.{a^2}.b.{b^2}}} = \frac{{{a^2}}}{{2{b^2}}}\);

c) \(\frac{{5a\left( {a - b} \right)}}{{10b\left( {b - a} \right)}} = \frac{{5a\left( {a - b} \right)}}{{ - 5.2b\left( {a - b} \right)}} = \frac{{ - a}}{{2b}}\);

d) \(\frac{{3a\left( {1 - a} \right)}}{{9{{\left( {a - 1} \right)}^2}}} = \frac{{3a\left( {1 - a} \right)}}{{9{{\left( {1 - a} \right)}^2}}}  = \frac{{3a\left( {1 - a} \right)}}{{{3^2}\left( {1 - a} \right)\left( {1 - a} \right)}} = \frac{a}{{3\left( {1 - a} \right)}}\). 


Bình chọn:
4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí