Giải bài 3 trang 9 vở thực hành Toán 8>
Thu gọn các đa thức sau:
Đề bài
Thu gọn các đa thức sau:
a) \(5{x^4} - 2{x^3}y + 20x{y^3} + 6{x^3}y - 3{x^2}{y^2} + x{y^3} - {y^4};\)
b) \(0,6{x^3} + {x^2}z - 2,7x{y^2} + 0,4{x^3} + 1,7x{y^2}\) .
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc cộng (trừ) các đơn thức đồng dạng để thu gọn đa thức.
Lời giải chi tiết
a) \(5{x^4} - 2{x^3}y + 20x{y^3} + 6{x^3}y - 3{x^2}{y^2} + x{y^3} - {y^4};\)
\(\begin{array}{l} = 5{x^4} + ( - 2 + 6){x^3}y + (20 + 1)x{y^3} - 3{x^2}{y^2} - {y^4}\\ = 5{x^4} + 4{x^3}y + 21x{y^3} - 3{x^2}{y^2} - {y^4}\end{array}\)
b) \(0,6{x^3} + {x^2}z - 2,7x{y^2} + 0,4{x^3} + 1,7x{y^2}\) .
\(\begin{array}{l} = (0,6 + 0,4){x^3} + {x^2}z + ( - 2,7 + 1,7)x{y^2}\\ = {x^3} + {x^2}z - x{y^2}\end{array}\)
- Giải bài 4 trang 9 vở thực hành Toán 8
- Giải bài 5 trang 10 vở thực hành Toán 8
- Giải bài 6 trang 10 vở thực hành Toán 8
- Giải bài 7 trang 10 vở thực hành Toán 8
- Giải bài 8 trang 10 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay