Giải bài 3 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống


Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x. \(M = {\left( {3x - 2} \right)^2} - {\left( {3x + 2} \right)^2} + {\left( {x + 2} \right)^3} + {\left( {x - 2} \right)^3} - 2{x^3}\).

Đề bài

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

\(M = {\left( {3x - 2} \right)^2} - {\left( {3x + 2} \right)^2} + {\left( {x + 2} \right)^3} + {\left( {x - 2} \right)^3} - 2{x^3}\).

Phương pháp giải - Xem chi tiết

Để chứng minh giá trị của biểu thức M không phụ thuộc vào biến tức là ta đi rút gọn biểu thức M (bằng cách sử dụng hằng đẳng thức, cộng trừ các đa thức,…).

Lời giải chi tiết

\(M = {\left( {3x - 2} \right)^2} - {\left( {3x + 2} \right)^2} + {\left( {x + 2} \right)^3} + {\left( {x - 2} \right)^3} - 2{x^3}\)

\( = 9{x^2} - 12x + 4 - 9{x^2} - 12x - 4 + {x^3} + 6{x^2} + 12x + 8 + {x^3} - 6{x^2} + 12x - 8 - 2{x^3}\)

\( = \left( {9{x^2} - 9{x^2} + 6{x^2} - 6{x^2}} \right) - \left( {12x - 12x - 12x + 12x} \right) + \left( {{x^3} + {x^3} - 2{x^3}} \right) + \left( {4 - 4 + 8 - 8} \right) = 0\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí