Giải bài 2 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống>
Cho các đa thức: \(A = 27{x^3}{y^6} - \frac{1}{8}{y^3};\;\;\;\;B = 9{x^2}{y^4} + \frac{3}{2}x{y^3} + \frac{1}{4}{y^2};\;\;\;C = 3x{y^2} - \frac{1}{2}y\) Chứng minh rằng \(A:B = C\).
Đề bài
Cho các đa thức: \(A = 27{x^3}{y^6} - \frac{1}{8}{y^3};\;\;\;\;B = 9{x^2}{y^4} + \frac{3}{2}x{y^3} + \frac{1}{4}{y^2};\;\;\;C = 3x{y^2} - \frac{1}{2}y\)
Chứng minh rằng \(A:B = C\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức nhân hai đa thức để chứng minh: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải chi tiết
Ta có: \(B.C = \left( {9{x^2}{y^4} + \frac{3}{2}x{y^3} + \frac{1}{4}{y^2}} \right).\left( {3x{y^2} - \frac{1}{2}y} \right)\)
\( = 9{x^2}{y^4}\left( {3x{y^2} - \frac{1}{2}y} \right) + \frac{3}{2}x{y^3}\left( {3x{y^2} - \frac{1}{2}y} \right) + \frac{1}{4}{y^2}\left( {3x{y^2} - \frac{1}{2}y} \right)\)
\( = 27{x^3}{y^6} - \frac{9}{2}{x^2}{y^5} + \frac{9}{2}{x^2}{y^5} - \frac{3}{4}x{y^4} + \frac{3}{4}x{y^4} - \frac{1}{8}{y^3} = 27{x^3}{y^6} - \frac{1}{8}{y^3} = A\)
Vậy \(A:B = C\).
- Giải bài 3 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 4 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 5 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 6 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 16 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 15 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 14 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 13 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 12 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 16 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 15 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 14 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 13 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 12 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống