Giải bài 3 trang 58 vở thực hành Toán 8


Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.

Phương pháp giải - Xem chi tiết

Dựa vào dấu hiệu nhận biết hình chữ nhật.

Lời giải chi tiết

(H.3.29). Ta có: AM = MC, HM = MN nên tứ giác AHCN có hai đường chéo AC, HN cắt nhau tại trung điểm mỗi đường nên AHCN là hình bình hành.

Vì \(\widehat {AHC} = 90^\circ \) hay hình bình hành AHCN có một góc vuông nên AHCN là hình chữ nhật.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí