 Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo
                                                
                            Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo
                         Bài 6. Phép vị tự Chuyên đề học tập Toán 11 Chân trời s..
                                                        Bài 6. Phép vị tự Chuyên đề học tập Toán 11 Chân trời s..
                                                    Giải bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo>
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\; + {\rm{ }}4x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0.\)
Viết phương trình ảnh của (C)
a) qua phép vị tự tâm O, tỉ số \(k{\rm{ }} = {\rm{ }}2;\)
b) qua phép vị tự tâm \(I\left( {1;{\rm{ }}1} \right),\) tỉ số \(k{\rm{ }} = {\rm{ }}-2.\)
Phương pháp giải - Xem chi tiết
Nếu \({V_{(I,k)}}{\rm{[}}M(x,y){\rm{]}} = M'(x',y')\). Khi đó, \(\left\{ \begin{array}{l}x' - a = k(x - a)\\y' - b = k(y - b)\end{array} \right.\) với \(I(a;b)\)
Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng nhân lên với |k|, biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng |k|, biến đường tròn bán kính r thành đường tròn bán kính \(r' = |k|.r\).
Lời giải chi tiết
Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\; + {\rm{ }}4x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) có tâm A(–2; 1) và bán kính \(R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} - \left( { - 4} \right)} = 3\)
a) Gọi đường tròn (C’) là ảnh của đường tròn (C) qua \({V_{\left( {O,{\rm{ }}2} \right)}}\)
Khi đó (C’) có tâm ảnh của A qua \({V_{\left( {O,{\rm{ }}2} \right)}}\) và bán kính
Gọi \(A'\left( {x';{\rm{ }}y'} \right)\) là ảnh của A qua \({V_{\left( {O,{\rm{ }}2} \right)}}\).
Suy ra \(\overrightarrow {OA'} = 2\overrightarrow {OA} \) với \(\overrightarrow {OA} = \left( { - 2;1} \right)\) và \(\overrightarrow {OA'} = \left( {x';y'} \right)\)
Do đó \(\left\{ \begin{array}{l}x' = 2.( - 2) = - 4\\y' = 2.1 = 2\end{array} \right.\)
Vì vậy \(\;A'\left( {-4;{\rm{ }}2} \right).\)
Vậy phương trình đường tròn (C’) là: \(\;{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}\; = {\rm{ }}36.\)
b) Gọi đường tròn (C’’) là ảnh của đường tròn (C) qua \({V_{\left( {I,{\rm{ }}-2} \right)}}.\)
Khi đó \(\left( {C'''} \right)\) có tâm ảnh của A qua \({V_{\left( {I,{\rm{ }}-2} \right)}}\) và bán kính \(R'' = {\rm{ }}\left| {-2} \right|.R{\rm{ }} = {\rm{ }}2.3{\rm{ }} = {\rm{ }}6.\)
Gọi \(A''\left( {x'';{\rm{ }}y''} \right)\) là ảnh của A qua \({V_{\left( {I,{\rm{ }}-2} \right)}}.\)
Suy ra \(\overrightarrow {IA'} = - 2\overrightarrow {IA} \) với \(\overrightarrow {I{A'}} = \left( {{{x'}'} - 1;{{y'}'} - 1} \right)\) và \(\overrightarrow {IA} = \left( { - 3;0} \right)\)
Do đó \(\left\{ \begin{array}{l}x'' - 1 = \left( { - 2} \right).( - 3)\\y' - 1 = \left( { - 2} \right).0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x'' = 7\\y' = 1\end{array} \right.\)
Suy ra tọa độ \(A''\left( {7;{\rm{ }}1} \right).\)
Vậy phương trình đường tròn (C”) là: \({\left( {x{\rm{ }}-{\rm{ }}7} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2}\; = {\rm{ }}36.\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 4 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 5 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 6 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 7 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải mục 2 trang 84, 85 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
- Giải bài 3 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải mục 2 trang 84, 85 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
- Giải bài 3 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            