Giải bài 27 trang 14 SBT toán 10 - Cánh diều>
Chứng minh rằng: a) \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\) b) \(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với \(0 \le k \le n\)
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Chứng minh rằng:
a) \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\)
b) \(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với \(0 \le k \le n\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức và tính chất của tổ hợp để biến đổi vế phức tạp hơn của các đẳng thức trên
Một số công thức áp dụng: \(n(n - 1)! = n!,k(k - 1)! = k!\)
Lời giải chi tiết
a) Với \(1 \le k \le n\), biến đổi vế phải ta có:
VP = \(nC_{n - 1}^{k - 1} = \frac{{n(n - 1)!}}{{(k - 1)!\left[ {(n - 1) - (k - 1)} \right]!}}\)\( = \frac{{n!}}{{(k - 1)!(n - k)!}} = \frac{{n!}}{{\frac{{k!}}{k}(n - k)!}}\)\( = k\frac{{n!}}{{k!(n - k)!}}\) \( = kC_n^k\) = VT (ĐPCM)
b) Với \(0 \le k \le n\), biến đổi vế phải ta có:
VP = \(\frac{1}{{n + 1}}C_{n + 1}^{k + 1} = \frac{1}{{n + 1}}\frac{{(n + 1)!}}{{(k + 1)!\left[ {(n + 1) - (k + 1)} \right]!}}\)\( = \frac{{(n + 1).n!}}{{(n + 1)(k + 1)!(n - k)!}} = \frac{{n!}}{{(k + 1)!(n - k)!}}\)
\( = \frac{{n!}}{{(k + 1)k!(n - k)!}} = \frac{1}{{k + 1}}\frac{{n!}}{{k!(n - k)!}}\) \( = \frac{1}{{k + 1}}C_n^k\) = VT (ĐPCM)

