Giải bài 2.23 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức>
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Đề bài
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Phương pháp giải - Xem chi tiết
Dựa vào kiến thức đồ thị để làm
Lời giải chi tiết
Giả sử G là một đồ thị đầy đủ có n đỉnh và có ít nhất 1 000 cạnh (n ∈ ℕ, n ≥ 2).
Vì G là đồ thị đầy đủ nên mỗi cặp đỉnh của G đều được nối với nhau bằng một cạnh, do đó mỗi đỉnh của G đều có bậc là (n – 1).
Tổng tất cả các bậc của các đỉnh của G là n(n – 1).
Suy ra G có số cạnh là \(\frac{{n\left( {n - 1} \right)}}{2}\)
Vì G có ít nhất 1 000 cạnh nên ta có \(\frac{{n\left( {n - 1} \right)}}{2} \ge 1000\)
\(\begin{array}{*{20}{l}}{ \Leftrightarrow \;n\left( {n-1} \right)-2000 \ge 0}\\{ \Leftrightarrow \;{n^2}\;-n-2000{\rm{ }} \ge {\rm{ }}0{\rm{ }}\left( * \right)}\end{array}\)
Giải bất phương trình (*), ta được \(n \le \frac{{1 - 3\sqrt {889} }}{2} \approx - 44,22\) (không thỏa mãn) hoặc \(n \ge \frac{{1 + 3\sqrt {889} }}{2} \approx 45,22\) (thỏa mãn).
Do n là số tự nhiên nên n nhỏ nhất thỏa mãn là 46.
Vậy số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh là 46 đỉnh.
- Giải bài 2.24 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 2.25 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 2.26 trang 51 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 2.27 trang 51 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 2.28 trang 51 Chuyên đề học tập Toán 11 Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 3.24 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.23 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.22 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.21 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.20 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.24 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.23 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.22 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.21 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.20 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức