Giải bài 2.22 trang 49 sách bài tập toán 12 - Kết nối tri thức>
Trong không gian (Oxyz), cho hình hộp chữ nhật (ABCD.A'B'C'D') có đỉnh (A) trùng với gốc (O) và các đỉnh (D,B,A') có tọa độ lần lượt là (left( {3;0;0} right)), (left( {0; - 1;0} right)), (left( {0;0; - 2} right)). Xác định tọa độ các đỉnh còn lại của hình hộp chữ nhật.
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong không gian \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đỉnh \(A\) trùng với gốc \(O\) và các đỉnh \(D,B,A'\) có tọa độ lần lượt là \(\left( {3;0;0} \right)\), \(\left( {0; - 1;0} \right)\), \(\left( {0;0; - 2} \right)\). Xác định tọa độ các đỉnh còn lại của hình hộp chữ nhật.
Phương pháp giải - Xem chi tiết
Xác định xem điểm nào thuộc tia nào trong ba tia \(Ox\), \(Oy\), \(Oz\). Sau đó tìm các cặp vectơ bằng nhau để giải và tìm tọa độ các đỉnh.
Lời giải chi tiết
Theo đề bài, ta có \(D\) thuộc tia \(Ox\), \(B\) thuộc tia \(Oy\) và \(A'\) thuộc tia \(Oz\).
Ta có :
\(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}3 = {x_C}\\0 = {y_C} + 1\\0 = {z_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = - 1\\{z_C} = 0\end{array} \right. \Leftrightarrow C\left( {3; - 1;0} \right)\).
\(\overrightarrow {AA'} = \overrightarrow {DD'} \Leftrightarrow \left\{ \begin{array}{l}0 = {x_{D'}} - 3\\0 = {y_{D'}}\\ - 2 = {z_{D'}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 3\\{y_{D'}} = 0\\{z_{D'}} = - 2\end{array} \right. \Leftrightarrow D'\left( {3;0; - 2} \right)\).
\(\overrightarrow {A'B'} = \overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 0\\{y_{B'}} = - 1\\{z_{B'}} + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 0\\{y_{B'}} = - 1\\{z_{B'}} = - 2\end{array} \right. \Leftrightarrow B'\left( {0; - 1; - 2} \right)\).
\(\overrightarrow {CC'} = \overrightarrow {AA'} \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} - 3 = 0\\{y_{C'}} + 1 = 0\\{z_{C'}} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = 3\\{y_{C'}} = - 1\\{z_{C'}} = - 2\end{array} \right. \Leftrightarrow C'\left( {3; - 1; - 2} \right)\).
Vậy \(C\left( {3; - 1;0} \right)\), \(B'\left( {0; - 1; - 2} \right)\), \(C'\left( {3; - 1; - 2} \right)\) và \(D'\left( {3;0; - 2} \right)\).
- Giải bài 2.23 trang 50 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 2.24 trang 50 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 2.21 trang 49 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 2.20 trang 49 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 2.19 trang 49 sách bài tập toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức