Giải bài 1.11 trang 14 sách bài tập toán 12 - Kết nối tri thức


Sử dụng đồ thị dưới đây, xác định xem hàm số (y = fleft( x right)) có giá trị lớn nhất, giá trị nhỏ nhất hay cực trị tại mỗi điểm ({x_1},{x_2},{x_3},{x_4},{x_5},{x_6},{x_7},{x_8}) hay không.

Đề bài

Sử dụng đồ thị dưới đây, xác định xem hàm số \(y = f\left( x \right)\) có giá trị lớn nhất, giá trị nhỏ nhất hay cực trị tại mỗi điểm \({x_1},{x_2},{x_3},{x_4},{x_5},{x_6},{x_7},{x_8}\) hay không.

Phương pháp giải - Xem chi tiết

Quan sát đồ thị kết hợp với định nghĩa cực trị, giá trị lớn nhất, nhỏ nhất của hàm số để đưa ra kết luận.

Lời giải chi tiết

Ta có hàm số \(y = f\left( x \right)\) xác định trên \(\left[ {{x_1};{x_8}} \right]\). Từ đồ thị ta có:

+ \(f\left( x \right) \le f\left( {{x_8}} \right)\) với mọi \(x \in \left[ {{x_1};{x_8}} \right]\) và \({x_8} \in \left[ {{x_1};{x_8}} \right]\) thỏa mãn \(f\left( x \right) = f\left( {{x_8}} \right)\). Do đó hàm số đạt giá trị lớn nhất tại điểm \({x_8}\).

+ \(f\left( x \right) \ge f\left( {{x_7}} \right)\) với mọi \(x \in \left[ {{x_1};{x_8}} \right]\) và \({x_7} \in \left[ {{x_1};{x_8}} \right]\) thỏa mãn \(f\left( x \right) = f\left( {{x_7}} \right)\). Do đó hàm số

đạt giá trị nhỏ nhất tại điểm \({x_7}\).

Ta có hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {{x_1};{x_8}} \right]\).

+ Gọi \({h_1} = \frac{{{x_5} - {x_4}}}{2}\) , ta thấy \({h_1}\) dương. Vì \(f\left( x \right) > f\left( {{x_4}} \right)\) với mọi \(x \in \left( {{x_4} - {h_1};{x_4} + {h_1}} \right) \subset \left[ {{x_1};{x_8}} \right]\) và \(x \ne {x_4}\) nên hàm số đạt cực tiểu tại điểm \({x_4}\).

+ Tương tự, gọi \({h_2} = \frac{{{x_8} - {x_7}}}{2}\) , ta thấy \({h_2}\) dương. Vì \(f\left( x \right) > f\left( {{x_7}} \right)\) với mọi \(x \in \left( {{x_7} - {h_2};{x_7} + {h_2}} \right) \subset \left[ {{x_1};{x_8}} \right]\) và \(x \ne {x_7}\) nên hàm số đạt cực tiểu tại điểm \({x_7}\).

+ Gọi \({h_3} = \frac{{{x_6} - {x_5}}}{2}\) , ta thấy \({h_3}\) dương. Vì \(f\left( x \right) < f\left( {{x_6}} \right)\) với mọi \(x \in \left( {{x_6} - {h_3};{x_6} + {h_3}} \right) \subset \left[ {{x_1};{x_8}} \right]\) và \(x \ne {x_6}\) nên hàm số đạt cực đại tại điểm \({x_6}\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 1.12 trang 14 sách bài tập toán 12 - Kết nối tri thức

    Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (y = 3{x^4} - 4{x^3}); b) (y = frac{{{x^2}}}{{x - 1}},x > 1).

  • Giải bài 1.13 trang 14 sách bài tập toán 12 - Kết nối tri thức

    Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (y = - {x^3} + 3{x^2} + 2); b) (y = frac{{{x^2}}}{{{x^2} + 2}}).

  • Giải bài 1.14 trang 14 sách bài tập toán 12 - Kết nối tri thức

    Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (fleft( x right) = xsqrt {4 - {x^2}} , - 2 le x le 2); b) (fleft( x right) = x - cos x, - frac{pi }{2} le x le frac{pi }{2}).

  • Giải bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thức

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: (fleft( x right) = left{ begin{array}{l}2x - 1,{rm{ }}0 le x le 2{x^2} - 5x + 9,{rm{ }}2 < x le 3.end{array} right.)

  • Giải bài 1.16 trang 15 sách bài tập toán 12 - Kết nối tri thức

    Lợi nhuận thu được (P) của một công ty khi dùng số tiền (s) chi cho quảng cáo được cho bởi công thức (P = Pleft( s right) = - frac{1}{{10}}{s^3} + 6{s^2} + 400,{rm{ s}} ge 0). Ở đây các số tiền được được tính bằng đơn vị nghìn USD. a) Tìm số tiền công ty phải chi cho quảng cáo để mang lại lợi nhuận tối đa. b) Lợi nhuận thu được của công ty thay đổi thế nào khi số tiền chi cho quảng cáo thay đổi?

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí