Giải bài 11 trang 36 sách bài tập toán 8 - Cánh diều>
Cho biểu thức: (T = frac{{{x^3}}}{{{x^2} - 4}} - frac{x}{{x - 2}} - frac{2}{{x + 2}})
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho biểu thức: \(T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\)
a) Viết điều kiện xác định của biểu thức \(T\)
b) Tìm giá trị của \(x\) để \(T = 0\).
c) Tìm giá trị nguyên của \(x\) để \(T\) nhận giá trị dương.
Phương pháp giải - Xem chi tiết
Áp dụng phương pháp cộng trừ phân thức đại số để rút gọn phép tính, sau đó tìm điều kiện xác định và giá trị của phân thức.
Lời giải chi tiết
Ta có: \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right)\) nên điều kiện xác định của biểu thức \(T\) là \(x - 2 \ne 0;x + 2 \ne 0\) hay \(x \ne 2;x \ne - 2\).
b) Ta có:
\(\begin{array}{l}T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\\ = \frac{{{x^3}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{{x^3} - {x^2} - 2x - 2x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^3} - {x^2} - 4x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{\left( {{x^3} - 4x} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = \frac{{x\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}}\\ = \frac{{\left( {x - 1} \right)\left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = x - 1\end{array}\)
Suy ra \(T = 0\) khi \(x - 1 = 0\) hay \(x = 1\) (thỏa mãn điều kiện xác định
Vậy \(x = 1\) thì \(T = 0\)
c) Để \(T > 0\) thì \(x - 1 > 0\) hay \(x > 1\). Kết hợp với \(x\) là số nguyên và điều kiện xác định \(x \ne 2;x \ne - 2\), suy ra \(x \in \left\{ {3;4;5;...} \right\}\)