Đề khảo sát chất lượng đầu năm Toán 12 - Đề số 2

Đề bài

Câu 1 :

Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?

  • A.

    \(m =  - 3\)

  • B.

    \(m =  - 2\)      

  • C.

    \(m = 0\)

  • D.

    \(m = 3\)

Câu 2 :

Cho dãy số $\left( {{u_n}} \right)$, biết ${u_n} = \dfrac{{ - n}}{{n + 1}}.$ Năm số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?

  • A.

    $ - \dfrac{1}{2}; - \dfrac{2}{3}; - \dfrac{3}{4}; - \dfrac{4}{5}; - \dfrac{5}{6}.$

  • B.

    $ - \dfrac{2}{3}; - \dfrac{3}{4}; - \dfrac{4}{5}; - \dfrac{5}{6}; - \dfrac{6}{7}.$

  • C.

    $\dfrac{1}{2};\dfrac{2}{3};\dfrac{3}{4};\dfrac{4}{5};\dfrac{5}{6}.$    

  • D.

    $0; - \dfrac{1}{2}; - \dfrac{2}{3}; - \dfrac{3}{4}; - \dfrac{4}{5}$

Câu 3 :

Tính $\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2} - x + 7} \right)$ bằng?

  • A.

    $5$

  • B.

    $7$

  • C.

    $9$

  • D.

    $6$

Câu 4 :

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:

  • A.

    Năm mặt

  • B.

    Hai mặt 

  • C.

    Ba mặt

  • D.

    Bốn mặt

Câu 5 :

Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$$M =  - 2$. Chọn khẳng định đúng:

  • A.

    $f\left( x \right) \geqslant  - 2,\forall x \in \left[ {1;3} \right]$ 

  • B.

    $f\left( 1 \right) = f\left( 3 \right) =  - 2$

  • C.

    $f\left( x \right) <  - 2,\forall x \in \left[ {1;3} \right]$                     

  • D.

    $f\left( x \right) \leqslant  - 2,\forall x \in \left[ {1;3} \right]$

Câu 6 :

Cho cấp số cộng $6;x; - 2;y$. Khẳng định nào sau đây đúng ?

  • A.

    $x = 2,y = 5$  

  • B.

    $x = 4,y = 6$  

  • C.

    $x = 2,y =  - 6$          

  • D.

    $x = 4,y =  - 6$.

Câu 7 :

Muốn đi từ A đến B thì bắt buộc phải đi qua C. Có 3 con đường đi từ A tới C và 2 con đường từ C đến B. Số con đường đi từ A đến B là:

  • A.

    \(6\)     

  • B.

    \(5\)

  • C.

    \(1\)

  • D.

    \(7\)

Câu 8 :

Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$

  • A.

    \(y = \sin x - 3x\)

  • B.

    \(y = \cos x + 2x\)

  • C.

    \(y = {x^3}\)

  • D.

    \(y = {x^5}\)

Câu 9 :

Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?

  • A.

    $\mathop{\max}\limits_{x\in\mathbb{R}}f\left(x\right)=3$

  • B.

    Hàm số đồng biến trên khoảng$\left( { - \infty ;3} \right)$

  • C.

    Giá trị cực tiểu của hàm số bằng 2

  • D.

    $\mathop {\min }\limits_{x \in \left[ {0;4} \right]} f\left( x \right) =  - 1$

Câu 10 :

Cho các hình sau: hình chóp tam giác đều, hình hộp đứng, hình lăng trụ tam giác đều, hình chóp tứ giác có đáy là hình thoi, hình hộp có đáy là hình thoi. Số hình có mặt phẳng đối xứng là:

  • A.

    \(5\)     

  • B.

    \(4\)     

  • C.

    \(3\)

  • D.

    \(2\)

Câu 11 :

Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng $36$. Một cấp số cộng có $n$ số hạng, công sai $d = 4$, tổng các số hạng bằng $510$. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó $n$ bằng:

  • A.

    $12$  

  • B.

    $13$  

  • C.

    $14$  

  • D.

    $15$

Câu 12 :

Cho hàm số $y = {x^4} - 2m{x^2} + {m^2} + m.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác có một góc ${120^o}$ là:

  • A.

    $m = \dfrac{1}{{\sqrt[3]{3}}}$ 

  • B.

    $m = 0;\,m = \dfrac{1}{{\sqrt[3]{3}}}$ 

  • C.

    $m = \dfrac{1}{{\sqrt[3]{2}}}$ 

  • D.

    $m = 1$ 

Câu 13 :

Hình vẽ sau đây là hình trải phẳng của khối đa diện đều nào?

  • A.

    không có khối đa diện đều nào          

  • B.

    hình lập phương

  • C.

    mười hai mặt đều

  • D.

    hai mươi mặt đều

Câu 14 :

Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:

  • A.

    \(k2\pi \left( {k \in Z} \right)\)           

  • B.

    \(k\pi \left( {k \in Z} \right)\)

  • C.

    \(\pi  + k2\pi \left( {k \in Z} \right)\)

  • D.

    Cả 3 đáp án đúng

Câu 15 :

Cho \(C_{x + 1}^y:C_x^{y + 1}:C_x^{y - 1} = 6:5:2\). Khi đó tổng $x + y$ bằng:

  • A.

    $3$     

  • B.

    $ - 8$

  • C.

    $11$

  • D.

    $ - 3$

Câu 16 :

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;4} \right]\) sao cho \(f\left( { - 1} \right) = 2\), \(f\left( 4 \right) = 7\). Có thể nói gì về số nghiệm của phương trình \(f\left( x \right) = 5\) trên đoạn \([ - 1;4]\):

  • A.

    Vô nghiệm.

  • B.

    Có ít nhất một nghiệm.

  • C.

    Có đúng một nghiệm.

  • D.

    Có đúng hai nghiệm.

Câu 17 :

Tính $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}$

  • A.

    $\dfrac{{23}}{2}$.

  • B.

    $24$.      

  • C.

    $\dfrac{3}{2}$.          

  • D.

    $3$.

Câu 18 :

Viết phương trình tiếp tuyến $d$ của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm có hoành độ \({x_0}\) thỏa mãn \(f''\left( {{x_0}} \right) = 0?\) 

  • A.

    \(3x + y - 3 = 0\) 

  • B.

    \(3x - y - 3 = 0\) 

  • C.

    \( - 3x + y - 3 = 0\) 

  • D.

    \(3x + y + 3 = 0\) 

Câu 19 :

Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :

  • A.

    $1$ 

  • B.

    $2$ 

  • C.

    $3$ 

  • D.

    $4$ 

Câu 20 :

Cho mặt phẳng $\left( {ABC} \right)$  và hai điểm $D,E$  nằm ngoài mặt phẳng $\left( {ABC} \right)$ . Một đường thẳng $a$  nằm trong mặt phẳng $\left( {ABC} \right)$ . Khẳng định nào sau đây đúng?

  • A.

    Nếu $DE$  song song với $a$  thì tồn tại giao điểm $M$  của $DE$  và mặt phẳng $\left( {ABC} \right)$  nằm ngoài đường thẳng $a$

  • B.

    Nếu $DE$  cắt $a$  tại $M$  thì $M$  là giao điểm của $DE$  và mặt phẳng $\left( {ABC} \right)$ 

  • C.

    Nếu $DE$  cắt $a$  tại $M$  thì tồn tại giao điểm $M$  của $DE$ và mặt phẳng $\left( {ABC} \right)$  nằm ngoài đường thẳng $a$ 

  • D.

    Nếu $DE$  song song với $a$ thì tồn tại giao điểm $M$  của $DE$  và mặt phẳng $\left( {ABC} \right)$ nằm trên đường thẳng $a$ 

Câu 21 :

Cho tứ diện $ABCD.$ Gọi $M, N$ lần lượt là trung điểm của các cạnh $AD $ và $ BC, G$ là trọng tâm tam giác $BCD.$ Khi đó giao điểm của đường thẳng $MG$ và $mp(ABC)$ là:

  • A.

    Điểm $C$

  • B.

    Giao điểm của đường thẳng $MG$ và đường thẳng $AN$

  • C.

    Điểm $N$

  • D.

    Giao điểm của đường thẳng $MG$ và đường thẳng $ BC$

Câu 22 :

Cho tứ diện $ABCD,$ gọi $G$ là trọng tâm tam giác $ACD,$ $M$ thuộc đoạn thẳng $BC$ sao cho $CM = 2MB.$ Chọn mệnh đề đúng trong các mệnh đề sau?

  • A.

    $MG // (ABC)$

  • B.

    $MG // (ABD)$

  • C.

    $MG // CD$

  • D.

    $MG // BD$

Câu 23 :

Cho tứ diện $ABCD$  có \(AB = a,CD = b,AB \bot CD\). Gọi $I$  và $J$  lần lượt là trung điểm của $AB$  và $CD$ . Mặt phẳng \(\left( \alpha  \right)\) qua $M$  nằm trên đoạn $IJ$  và song song với $AB$ và $CD$. Giao tuyến của mặt phẳng \(\left( \alpha  \right)\) và hình chóp có diện tích bằng bao nhiêu, biết $IJ = 3IM$

  • A.

    \(\dfrac{{2ab}}{3}\) 

  • B.

    \(\dfrac{{2ab}}{9}\)

  • C.

    \(\dfrac{{ab}}{3}\) 

  • D.

    \(\dfrac{{ab}}{9}\) 

Câu 24 :

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

  • A.

    $(NOM)$ cắt $(OPM)$

  • B.

    $(MON) // (SBC)$

  • C.

    \(\left( {PON} \right) \cap \left( {MNP} \right) = NP\) 

  • D.

    \(\left( {MNP} \right)//\left( {SBD} \right)\)

Câu 25 :

Cho hai hình vuông $ABCD,ABEF$ có chung cạnh $AB$ và nằm trong hai mặt phẳng khác nhau. Trên các đường chéo $AC$ và $BF$ ta lấy các điểm $M, N$ sao cho $AM = BN.$ Mặt phẳng $(P)$ chứa $MN$ và song song với $AB$ cắt $AD$ và $AF$ lần lượt tại $M’, N’.$ Khẳng định nào sau đây là đúng?

  • A.

    $AC, BF$ cắt nhau

  • B.

    Tứ giác $MNM’N’$ là hình bình hành

  • C.

    $MN$ song song với $(DEF)$       

  • D.

    $MN$ cắt $(DEF)$

Câu 26 :

Cho hình hộp $ABCD.A'B'C'D'$ có đáy là hình thoi $\widehat {BAD} = {60^0}$$A'A = A'B = A'D$. Gọi $O = AC \cap BD$. Hình chiếu của $A'$ trên $\left( {ABCD} \right)$ là :

  • A.

    trung điểm của $AO.$ 

  • B.

    trọng tâm $\Delta ABD.$

  • C.

    giao của hai đoạn $AC$$BD.$ 

  • D.

    trọng tâm$\Delta BCD.$ 

Câu 27 :

Cho tam giác \(ABC\) vuông cân tại \(A\)\(BC = a.\) Trên đường thẳng qua \(A\) vuông góc với \(\left( {ABC} \right)\) lấy điểm \(S\) sao cho $SA = \dfrac{{a\sqrt 6 }}{2}$. Tính số đo góc giữa đường thẳng \(SA\)\(\left( {ABC} \right)\)

  • A.

    \(30^\circ \).

  • B.

    \(45^\circ \).

  • C.

    \(60^\circ \).

  • D.

    \(90^\circ \).

Câu 28 :

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông tâm $O$, cạnh $a$. Đường thẳng $SO$ vuông góc với mặt phẳng đáy $\left( {ABCD} \right)$ và $SO = \dfrac{{a\sqrt 3 }}{2}$. Tính góc giữa hai mặt phẳng $\left( {SBC} \right)$ và $\left( {ABCD} \right)$.

  • A.

    ${30^0}.$ 

  • B.

    ${45^0}.$

  • C.

    ${60^0}.$        

  • D.

    ${90^0}.$

Câu 29 :

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi tâm $I$, cạnh $a$, góc $\widehat {BAD} = {60^0}$, $SA = SB = SD = \dfrac{{a\sqrt 3 }}{2}$. Gọi \(\varphi \) là góc giữa hai mặt phẳng $\left( {SBD} \right)$ và $\left( {ABCD} \right).$ Mệnh đề nào sau đây đúng?

  • A.

    $\tan \varphi  = \sqrt 5 .$

  • B.

    $\tan \varphi  = \dfrac{{\sqrt 5 }}{5}.$

  • C.

    $\tan \varphi  = \dfrac{{\sqrt 3 }}{2}.$

  • D.

    $\varphi  = {45^0}.$

Câu 30 :

Cho hình chóp $S.ABCD$, có đáy $ABCD$ là hình chữ nhật. Cạnh bên $SA$ vuông góc với đáy, $SA = AB = a$ và $AD = x.a$. Gọi $E$ là trung điểm của $SC$. Tìm $x$, biết khoảng cách từ điểm $E$ đến mặt phẳng $\left( {SBD} \right)$ bằng $h = \dfrac{a}{3}$.

  • A.

    $1.$

  • B.

    $\sqrt 2 .$

  • C.

    $2.$

  • D.

    $4.$

Câu 31 :

Cho hình chóp $S.ABC $ có đáy $ABC$ là tam giác vuông tại $B, AB = 3a, BC = 4a.$ Cạnh bên $SA$ vuông góc với đáy. Góc tạo bởi giữa $SC$ và đáy bằng ${60^0}$. Gọi $M$ là trung điểm của $AC,$ tính khoảng cách $d$ giữa hai đường thẳng $AB$ và $SM.$

  • A.

    \(d = a\sqrt 3 .\)

  • B.

    \(d = 5a\sqrt 3 .\)

  • C.

    \(d = \dfrac{{5a}}{2}.\)

  • D.

    \(d = \dfrac{{10a\sqrt 3 }}{{\sqrt {79} }}.\)

Câu 32 :

Cho hàm số  $y = f\left( x \right)$  có bảng biến thiên như sau:

Hàm số đạt cực đại tại điểm:

  • A.

    $x = 2$           

  • B.

    $x = 0$

  • C.

    $x = 3$

  • D.

    $x =  - 1$

Câu 33 :

Tiếp tuyến kẻ từ điểm $\left( {2;3} \right)$ tới đồ thị hàm số $y = \dfrac{{3x + 4}}{{x - 1}}$ là

  • A.

    $y =  - 28x + 59$ ; $y = x + 1$.

  • B.

    $y = -24x + 51$; $y = x + 1$.

  • C.

    $y =  - 28x + 59$.

  • D.

    $y =  - 28x + 59$; $y =  - 24x + 51$.

Câu 34 :

Cho hàm số \(f\left( x \right) =  - 4{x^3} + 4x - 1.\) Mệnh đề nào sau đây là sai?

  • A.

    Hàm số đã cho liên tục trên \(\mathbb{R}.\)   

  • B.

    Phương trình \(f\left( x \right) = 0\) không có nghiệm trên khoảng \(\left( { - \infty ;1} \right).\)      

  • C.

    Phương trình \(f\left( x \right) = 0\) có nghiệm trên khoảng \(\left( { - 2;0} \right).\)             

  • D.

    Phương trình \(f\left( x \right) = 0\) có ít nhất hai nghiệm trên khoảng \(\left( { - 3;\dfrac{1}{2}} \right).\)

Câu 35 :

Cho tứ diện \(ABCD\) có \(AB \bot CD\) và \(AC \bot BD\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên \(mp(BCD)\). Chọn khẳng định đúng :

  • A.

    \(H\) là trọng tâm tam giác \(BCD\).

  • B.

    \(CD \bot (ACH)\).

  • C.

    \(AD \bot BC\).

  • D.

    Các khẳng định trên đều đúng.

Câu 36 :

Cho hình chóp \(S.ABC\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tâm \(O\). Cạnh bên \(SA = 2a\) và vuông góc với mặt đáy \(\left( {ABCD} \right)\). Gọi \(\varphi \) là góc giữa \(SO\) và mặt phẳng \(\left( {ABCD} \right)\). Mệnh đề nào sau đây đúng?

  • A.

    \(\tan \varphi  = 2\sqrt 2 .\)

  • B.

    \(\varphi  = {60^0}.\)

  • C.

    \(\tan \varphi  = 2.\).           

  • D.

    \(\varphi  = {45^0}.\)

Câu 37 :

Đồ thị hàm số \(y = \tan x\) nhận đường thẳng nào sau đây là tiệm cận?

  • A.

    \(y = \dfrac{\pi }{3} + k\pi \left( {k \in Z} \right)\)

  • B.

    \(x = k\pi \left( {k \in Z} \right)\)

  • C.

    \(x = \dfrac{\pi }{2} + k\pi \left( {k \in Z} \right)\)

  • D.

    \(y = \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\)

Câu 38 :

Tìm tập giá trị nhỏ nhất, giá trị lớn nhất của hàm số sau

\(y = 3{\left( {3\sin x + 4\cos x} \right)^2} + 4\left( {3\sin x + 4\cos x} \right) + 1\)

  • A.

    \(\min y = \dfrac{1}{3};\max y = 96\)

  • B.

    \(\min y = \dfrac{1}{3};\max y = 6\)

  • C.

    \(\min y =  - \dfrac{1}{3};\max y = 96\)

  • D.

    \(\min y = 2;\max y = 6\)

Câu 39 :

Trên giá sách có $6$ quyển Văn khác nhau, $5$ quyển sách Toán khác nhau và $9$ quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?

  • A.

    $54$

  • B.

    $405$

  • C.

    $30$

  • D.

    $129$

Câu 40 :

Để phương trình \({\sin ^2}x + 2\left( {m + 1} \right)\sin x - 3m\left( {m - 2} \right) = 0\) có nghiệm, các giá trị của tham số m là:

  • A.

    \(\left[ \begin{array}{l} - \dfrac{1}{2} \le m \le \dfrac{1}{2}\\1 \le m \le 2\end{array} \right.\)

  • B.

    \(\left[ \begin{array}{l} - \dfrac{1}{3} \le m \le \dfrac{1}{3}\\1 \le m \le 3\end{array} \right.\)

  • C.

    \(\left[ \begin{array}{l} - 2 \le m \le  - 1\\0 \le m \le 1\end{array} \right.\)

  • D.

    \(\left[ \begin{array}{l} - 1 \le m \le 1\\3 \le m \le 4\end{array} \right.\)

Câu 41 :

Nghiệm của phương trình \(\cos 7x\cos 5x - \sqrt 3 \sin 2x = 1 - \sin 7x\sin 5x\) là:

  • A.

    $\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{3} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$           

  • B.

    $\left[ \begin{array}{l}x = k\pi \\x =  - \dfrac{\pi }{3} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$

  • C.

    $x = k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)$

  • D.

    $\left[ \begin{array}{l}x = k2\pi \\x =  - \dfrac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$

Câu 42 :

Giá trị của $n$ thỏa mãn $3A_n^2 - A_{2n}^2 + 42 = 0$ là

  • A.

    $9$.

  • B.

    $8$.

  • C.

    $6$.

  • D.

    $10$.

Câu 43 :

Một con xúc sắc cân đối và đồng chất được gieo ba lần. Gọi $P$ là xác suất để tổng số chấm xuất hiện ở hai lần gieo đầu bằng số chấm xuất hiện ở lần gieo thứ ba. Khi đó $P$ bằng:

  • A.

    $\dfrac{{10}}{{216}}$.

  • B.

    $\dfrac{{15}}{{216}}$.

  • C.

    $\dfrac{{16}}{{216}}$.

  • D.

    $\dfrac{{12}}{{216}}$.

Câu 44 :

Một gia đình cần khoan một cái giếng để lấy nước. Họ thuê một đội khoan giếng nước đến để khoan giếng nước. Biết giá của mét khoan đầu tiên là 80.000 đồng, kể từ mét khoan thứ 2 giá của mỗi mét khoan tăng thêm 5000 đồng so với giá của mét khoan trước đó. Biết cần phải khoan sâu xuống 50m mới có nước. Vậy hỏi phải trả bao nhiêu tiền để khoan cái giếng đó?

  • A.

    $5.2500.000$ đồng

  • B.

    $10.125.000$ đồng

  • C.

    $4.000.000$ đồng

  • D.

    $4.245.000$ đồng

Câu 45 :

Trong các dãy số $\left( {{u_n}} \right)$ cho bởi số hạng tổng quát ${u_n}$ sau, dãy số nào là một cấp số nhân?

  • A.

    \({u_n} = 7 - 3n.\)

  • B.

    \({u_n} = 7 - {3^n}.\)

  • C.

    \({u_n} = \dfrac{7}{{3n}}.\)

  • D.

    \({u_n} = {7.3^n}.\)

Câu 46 :

Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 - 4t\\y = 1 + t\end{array} \right..\)Ảnh của đường thẳng \(\Delta \) qua phép đối xứng tâm \(I\left( { - 2;2} \right)\) có phương trình là:

  • A.

    \(x + 4y - 5 = 0.\)

  • B.

    \(x + 4y - 6 = 0.\)

  • C.

    $4x - y + 1 = 0.$

  • D.

    \(4x - y - 1 = 0.\)

Câu 47 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Tìm số điểm cực trị của hàm số \(y = {2019^{f\left( {f\left( x \right) - 1} \right)}}\).

  • A.

    \(13\)

  • B.

    $11$

  • C.

    $10$

  • D.

    $12$

Câu 48 :

Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là

  • A.

    \(1\).

  • B.

    \(\dfrac{1}{3}\).

  • C.

    \(\dfrac{2}{3}\).

  • D.

    \(\dfrac{1}{2}\).

Câu 49 :

Cho tứ diện \(ABCD\) có \(AB = CD = 4,BC = AD = 5,AC = BD = 6\). \(M\) là điểm thay đổi trong tâm giác \(ABC\). Các đường thẳng qua \(M\) song song với \(AD,BD,CD\) tương ứng cắt mặt phẳng \(\left( {BCD} \right),\left( {ACD} \right),\left( {ABD} \right)\) tại \(A',B',C'\). Giá trị lớn nhất của \(MA'.MB'.MC'\) là

  • A.

    \(\dfrac{{40}}{9}\)

  • B.

    \(\dfrac{{24}}{9}\)

  • C.

    \(\dfrac{{30}}{9}\) 

  • D.

    \(\dfrac{{20}}{9}\)

Câu 50 :

Cho hàm số \(f\left( x \right)\) có bảng xét dấu có đạo hàm như hình bên dưới

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

  • A.

    \(\left( {0;\dfrac{3}{2}} \right)\)

  • B.

    \(\left( { - \dfrac{1}{2};1} \right)\)

  • C.

    \(\left( { - 2; - \dfrac{1}{2}} \right)\)      

  • D.

    \(\left( {\dfrac{3}{2};3} \right)\)

Lời giải và đáp án

Câu 1 :

Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?

  • A.

    \(m =  - 3\)

  • B.

    \(m =  - 2\)      

  • C.

    \(m = 0\)

  • D.

    \(m = 3\)

Đáp án : C

Lời giải chi tiết :

Phương trình \(\sin x = m\) có nghiệm nếu \(\left| m \right| \le 1\) và vô nghiệm nếu \(\left| m \right| > 1\)

Đáp án A: $|m|=|-3|=3>1$=> Loại

Đáp án B: $|m|=|-2|=2>1$=> Loại

Đáp án C: $|m|=|0|=0\le 1$ => Nhận

Đáp án D: $|m|=|3|=3>1$=> Loại

Chú ý

Một số em có thể sẽ chọn nhầm đáp án D vì nghĩ \(m > 0\) thì phương trình có nghiệm là sai.

Câu 2 :

Cho dãy số $\left( {{u_n}} \right)$, biết ${u_n} = \dfrac{{ - n}}{{n + 1}}.$ Năm số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?

  • A.

    $ - \dfrac{1}{2}; - \dfrac{2}{3}; - \dfrac{3}{4}; - \dfrac{4}{5}; - \dfrac{5}{6}.$

  • B.

    $ - \dfrac{2}{3}; - \dfrac{3}{4}; - \dfrac{4}{5}; - \dfrac{5}{6}; - \dfrac{6}{7}.$

  • C.

    $\dfrac{1}{2};\dfrac{2}{3};\dfrac{3}{4};\dfrac{4}{5};\dfrac{5}{6}.$    

  • D.

    $0; - \dfrac{1}{2}; - \dfrac{2}{3}; - \dfrac{3}{4}; - \dfrac{4}{5}$

Đáp án : A

Phương pháp giải :

Thay lần lượt các giá trị \(n = 1,2,3,4,5\) vào công thức số hạng tổng quát của dãy số.

Lời giải chi tiết :

Ta có \({u_1} =  - \dfrac{1}{2};{u_2} =  - \dfrac{2}{3};{u_3} =  - \dfrac{3}{4};\) \({u_4} =  - \dfrac{4}{5};{u_5} =  - \dfrac{5}{6}.\) 

Chú ý

Một số em có thể thay nhầm giá trị đầu tiên \(n = 0\) và chọn nhầm đáp án D là sai. Cần chú ý dãy số là hàm số xác định trên tập \({N^*}\).

Câu 3 :

Tính $\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2} - x + 7} \right)$ bằng?

  • A.

    $5$

  • B.

    $7$

  • C.

    $9$

  • D.

    $6$

Đáp án : C

Phương pháp giải :

Hàm số \(y = f\left( x \right)\) xác định tại \(x = {x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}}  = f\left( {{x_0}} \right)\)

Lời giải chi tiết :

$\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2} - x + 7} \right) = {( - 1)^2} - ( - 1) + 7 = 9.$

Câu 4 :

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:

  • A.

    Năm mặt

  • B.

    Hai mặt 

  • C.

    Ba mặt

  • D.

    Bốn mặt

Đáp án : C

Phương pháp giải :

Sử dụng phương pháp chọn điểm rơi, lấy ví dụ cho hình tứ diện và suy ra đáp án.

Lời giải chi tiết :

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất 3 mặt (ví dụ các đỉnh của hình tứ diện)

Không tồn tại 1 đỉnh nào đó của đa diện nào đó là đỉnh chung của ít hơn 3 mặt

Chú ý

Một số em lấy ví dụ tứ diện nhưng tính nhầm mối đỉnh là đỉnh chung của \(4\) mặt và chọn D là sai.

Câu 5 :

Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$$M =  - 2$. Chọn khẳng định đúng:

  • A.

    $f\left( x \right) \geqslant  - 2,\forall x \in \left[ {1;3} \right]$ 

  • B.

    $f\left( 1 \right) = f\left( 3 \right) =  - 2$

  • C.

    $f\left( x \right) <  - 2,\forall x \in \left[ {1;3} \right]$                     

  • D.

    $f\left( x \right) \leqslant  - 2,\forall x \in \left[ {1;3} \right]$

Đáp án : D

Lời giải chi tiết :

Nếu $M =  - 2$ là GTLN của hàm số $y = f\left( x \right)$ trên $\left[ {1;3} \right]$ thì $f\left( x \right) \leqslant  - 2,\forall x \in \left[ {1;3} \right]$.

Câu 6 :

Cho cấp số cộng $6;x; - 2;y$. Khẳng định nào sau đây đúng ?

  • A.

    $x = 2,y = 5$  

  • B.

    $x = 4,y = 6$  

  • C.

    $x = 2,y =  - 6$          

  • D.

    $x = 4,y =  - 6$.

Đáp án : C

Phương pháp giải :

Sử dụng tính chất của CSC \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\)

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}6 - 2 = 2x\\x + y =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y =  - 6\end{array} \right.\)

Câu 7 :

Muốn đi từ A đến B thì bắt buộc phải đi qua C. Có 3 con đường đi từ A tới C và 2 con đường từ C đến B. Số con đường đi từ A đến B là:

  • A.

    \(6\)     

  • B.

    \(5\)

  • C.

    \(1\)

  • D.

    \(7\)

Đáp án : A

Lời giải chi tiết :

Có \(2\) công đoạn đi từ \(A\) đến \(B\) là: đi từ \(A\) đến \(C\) và đi từ \(C\) đến \(B\).

- Có \(3\) con đường từ \(A\) đến \(C\).

- Có \(2\) con đường từ \(C\) đến \(B\).

Vậy có \(3.2 = 6\) con đường đi từ \(A\) đến \(B\).

Chú ý

Một số em có thể sẽ chọn nhầm đáp án D vì nghĩ rằng còn có thêm một cách đi thẳng từ \(A\) đến \(B\) mà không cần qua \(C\) là sai vì đề bài cho bắt buộc phải qua \(C\).

Câu 8 :

Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$

  • A.

    \(y = \sin x - 3x\)

  • B.

    \(y = \cos x + 2x\)

  • C.

    \(y = {x^3}\)

  • D.

    \(y = {x^5}\)

Đáp án : A

Phương pháp giải :

+) Xét các hàm số theo từng đáp án.

+) Hàm số nào có $y' \ge 0$ với mọi $x \in R$ thì hàm số đó đồng biến trên R.

Lời giải chi tiết :

+) Xét đáp án A:$y = \sin x - 3x$ có: $y' = \cos x - 3.$

Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \cos x \le 1 \Rightarrow y' = {\rm{cosx\;}} - 3 < 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu}  \in R \Rightarrow $ hàm số nghịch biến trên $R.$

Vậy hàm số ở đáp án A không đồng biến trên $R$.

+) Xét đáp án B: $y = \cos x + 2x$ có: $y' = {\rm{\;}} - \sin x + 2.$

Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \sin x \le 1 \Rightarrow y' = {\rm{\;}} - \sin x + 2 > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu}  \in R$

Vậy hàm số đồng biến trên $\mathbb{R}.$

+) Xét đáp án C: $y'=3x^2\ge 0, \forall x$ nên hàm số đồng biến trên $R$.

+) Xét đáp án D: $y'=5x^4\ge 0, \forall x$ nên hàm số đồng biến trên $R$.

Vậy chỉ có hàm số ở đáp án A không đồng biến trên $R$.

Câu 9 :

Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?

  • A.

    $\mathop{\max}\limits_{x\in\mathbb{R}}f\left(x\right)=3$

  • B.

    Hàm số đồng biến trên khoảng$\left( { - \infty ;3} \right)$

  • C.

    Giá trị cực tiểu của hàm số bằng 2

  • D.

    $\mathop {\min }\limits_{x \in \left[ {0;4} \right]} f\left( x \right) =  - 1$

Đáp án : D

Phương pháp giải :

Quan sát đồ thị hàm số và rút ra các nhận xét về cực đại, cực tiểu, GTLN, GTNN, khoảng đồng biến, nghịch biến.

Lời giải chi tiết :

A sai vì $y=3$ là giá trị cực đại của hàm số, không phải giá trị lớn nhất.

B sai vì hàm số đồng biến trên các khoảng $\left( { - \infty ;0} \right),\left( {2; + \infty } \right)$.

C sai vì $x=2$ là điểm cực tiểu của hàm số không phải giá trị cực tiểu.

D đúng vì trên đoạn $\left[ {0;4} \right]$ thì hàm số đạt GTNN (cũng là giá trị cực tiểu) bằng $ - 1$ đạt được tại $x = 2$.

Chú ý

Học sinh thường nhầm lẫn cách tìm GTLN, GTNN của hàm số với giá trị cực đại, giá trị cực tiểu của hàm số. nên có thể chọn A là sai.

Câu 10 :

Cho các hình sau: hình chóp tam giác đều, hình hộp đứng, hình lăng trụ tam giác đều, hình chóp tứ giác có đáy là hình thoi, hình hộp có đáy là hình thoi. Số hình có mặt phẳng đối xứng là:

  • A.

    \(5\)     

  • B.

    \(4\)     

  • C.

    \(3\)

  • D.

    \(2\)

Đáp án : C

Lời giải chi tiết :

Các hình có mặt phẳng đối xứng là:

+ Hình chóp tam giác đều có \(3\) mặt phẳng đối xứng.

+ Hình hộp đứng có \(1\) mặt phẳng đối xứng.

+ Hình lăng trụ tam giác đều có \(4\) mặt phẳng đối xứng.

+ Hình hộp có đáy là hình thoi không có mặt phẳng đối xứng.

+ Hình chóp tứ giác có đáy là hình thoi không có mặt phẳng đối xứng.

Vậy có \(3\) hình có mặt phẳng đối xứng.

Chú ý

Một số em nhầm hình chóp tứ giác có đáy là hình thoi cũng có mặt phẳng đối xứng và chọn đáp án B là sai. Một số khác thì nhầm hình hộp có đáy là hình thoi cũng có mặt phẳng đối xứng và chọn đáp án A hoặc B là sai.

Câu 11 :

Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng $36$. Một cấp số cộng có $n$ số hạng, công sai $d = 4$, tổng các số hạng bằng $510$. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó $n$ bằng:

  • A.

    $12$  

  • B.

    $13$  

  • C.

    $14$  

  • D.

    $15$

Đáp án : D

Phương pháp giải :

- Sử dụng tính chất của cấp số nhân để tính số hạng thứ hai của cấp số nhân và cũng là số hạng đầu tiên của cấp số cộng.

- Sử dụng công thức tổng \(n\) số hạng đầu tiên của cấp số cộng để tìm \(n\).

Lời giải chi tiết :

Với cấp số nhân \(a,b,c > 0 \Rightarrow {b^2} = ac = 36 \Rightarrow b = 6 > 0\)

Do đó, theo giả thiết cấp số cộng ta có

\({u_1} = 6;d = 4;{S_n} = 510\)

\(\begin{array}{l}{S_n} = \dfrac{n}{2}\left( {2{u_1} + (n - 1)d} \right) \Leftrightarrow 510 = \dfrac{n}{2}\left( {12 + 4(n - 1)} \right)\\ \Leftrightarrow {n^2} + 2n - 255 = 0\\ \Rightarrow n = 15\end{array}\)

(do n nguyên dương)

Câu 12 :

Cho hàm số $y = {x^4} - 2m{x^2} + {m^2} + m.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác có một góc ${120^o}$ là:

  • A.

    $m = \dfrac{1}{{\sqrt[3]{3}}}$ 

  • B.

    $m = 0;\,m = \dfrac{1}{{\sqrt[3]{3}}}$ 

  • C.

    $m = \dfrac{1}{{\sqrt[3]{2}}}$ 

  • D.

    $m = 1$ 

Đáp án : A

Phương pháp giải :

- Bước 1: Tính $y'$.

- Bước 2: Ba điểm cực trị $A,B,C$ trong đó $A\left( {0;c} \right)$ tạo thành tam giác cân có góc ở đỉnh bằng $\alpha $ cho trước$ \Leftrightarrow \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} }\right|.\left| {\overrightarrow {AC} } \right|}} = \cos \alpha $

- Bước 3: Kết luận.

Lời giải chi tiết :

\(\begin{array}{l}y' = 4{x^3} - 4mx\\y' = 0 \Leftrightarrow 4{x^3} - 4mx = 0 \Leftrightarrow 4x\left( {{x^2} - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \sqrt m \end{array} \right.\end{array}\)

Điều kiện để hàm số có $3$ cực trị: \(m > 0\)

\(\begin{array}{l}x = 0 \Rightarrow A\left( {0;\,{m^2} + m} \right)\\x =  - \sqrt m  \Rightarrow y = {\left( { - \sqrt m } \right)^4} - 2m{\left( { - \sqrt m } \right)^2} + {m^2} + m \\= {m^2} - 2{m^2} + {m^2} + m = m \Rightarrow B\left( { - \sqrt m ;\,m} \right)\\x = \sqrt m  \Rightarrow C\left( {\sqrt m ;\,m} \right)\end{array}\)

$\begin{array}{l}
\overrightarrow {AB} = \left( { - \sqrt m ; - {m^2}} \right),\overrightarrow {AC} = \left( {\sqrt m ; - {m^2}} \right)\\
\widehat {BAC} = {120^0}\\
\Leftrightarrow \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \cos {120^0}\\
\Leftrightarrow \dfrac{{ - m + {m^4}}}{{\sqrt {m + {m^4}} .\sqrt {m + {m^4}} }} = - \dfrac{1}{2}\\
\Leftrightarrow 2\left( {{m^4} - m} \right) = - \left( {m + {m^4}} \right)\\
\Leftrightarrow 3{m^4} - m = 0\\
\Leftrightarrow m\left( {3{m^3} - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
m = 0\left( {loai} \right)\\
m = \dfrac{1}{{\sqrt[3]{3}}}
\end{array} \right.
\end{array}$

Chú ý

Cách tự luận cũng có thể làm như sau:

\(\begin{array}{l}\widehat {BAC} = {120^o} \Rightarrow \widehat {HAC} = {60^o}\\ \Rightarrow HC = AH.\tan {60^o}\\ \Leftrightarrow \left| {{x_C}} \right| = \left| {{y_A} - {y_C}} \right|.\sqrt 3 \\ \Leftrightarrow \left| { - \sqrt m } \right| = \left| {{m^2}} \right|.\sqrt 3 \\ \Leftrightarrow m = {m^4}.3\\ \Leftrightarrow 3{m^4} - m = 0\\ \Leftrightarrow m\left( {3{m^3} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\{m^3} = \dfrac{1}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = \dfrac{1}{{\sqrt[3]{3}}}\end{array} \right.\end{array}\)

Kết hợp với điều kiện \(m > 0 \Rightarrow m = \dfrac{1}{{\sqrt[3]{3}}}\) 

Ngoài ra, cách trắc nghiệm ta làm như sau:

Ta có thể sử dụng công thức giải nhanh: Đồ thị hàm số $y = a{x^4} + b{x^2} + c(a \ne 0)$ tạo thành tam giác có góc cân ở đỉnh bằng $\alpha $ cho trước: $\cos \alpha  = \dfrac{{{b^3} + 8a}}{{{b^3} - 8a}}$ 

Câu 13 :

Hình vẽ sau đây là hình trải phẳng của khối đa diện đều nào?

  • A.

    không có khối đa diện đều nào          

  • B.

    hình lập phương

  • C.

    mười hai mặt đều

  • D.

    hai mươi mặt đều

Đáp án : C

Lời giải chi tiết :

Quan sát hình vẽ ta thấy nó có \(12\) mặt và mỗi mặt là một ngũ giác đều.

Vậy hình vẽ trên là hình trải phẳng của khối mười hai mặt đều.

Câu 14 :

Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:

  • A.

    \(k2\pi \left( {k \in Z} \right)\)           

  • B.

    \(k\pi \left( {k \in Z} \right)\)

  • C.

    \(\pi  + k2\pi \left( {k \in Z} \right)\)

  • D.

    Cả 3 đáp án đúng

Đáp án : A

Phương pháp giải :

Bước 1: Tìm điều kiện xác định

Sử dụng công thức $\tan x =\dfrac{\sin x}{\cos x}$ và \(\tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}\) 

$\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi$

Bước 2: Giải phương trình lượng giác cơ bản: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\) và kết hợp với điều kiện xác định để loại nghiệm.

Lời giải chi tiết :

Bước 1:

Điều kiện:\(\left\{ \begin{array}{l}\cos x \ne 0\\\cos \dfrac{x}{2} \ne 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{2} + k\pi \\\dfrac{x}{2} \ne \dfrac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{2} + k\pi \\x \ne \pi  + k2\pi \end{array} \right.\)

Bước 2:

Ta có: \(\tan \dfrac{x}{2} = \tan x \Leftrightarrow \dfrac{x}{2} = x + k\pi  \) \(\Leftrightarrow  - \dfrac{x}{2} = k\pi \Leftrightarrow  - x = 2k\pi \) \(\Leftrightarrow x =  - k2\pi \left( {k \in Z} \right)\) (*)

Đặt \(k =  - l\) nên:

(*)\(\Leftrightarrow x =  l2\pi \left( {l \in Z} \right)\) (TMĐK)

Chú ý

Các em có thể nhận xét nhanh, vì điều kiện là \(x \ne \pi  + k2\pi \) nên có thể loại này các đáp án B và C, D nên chỉ còn đáp án A là đúng.

Câu 15 :

Cho \(C_{x + 1}^y:C_x^{y + 1}:C_x^{y - 1} = 6:5:2\). Khi đó tổng $x + y$ bằng:

  • A.

    $3$     

  • B.

    $ - 8$

  • C.

    $11$

  • D.

    $ - 3$

Đáp án : C

Phương pháp giải :

Áp dụng các công thức chỉnh hợp và tổ hợp: \(A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}}\,;\,C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\)

Và áp dụng công thức của tỉ lệ thức: $a:b:c = x:y:z \Rightarrow \left\{ \begin{array}{l}\dfrac{a}{b} = \dfrac{x}{y}\\\dfrac{a}{c} = \dfrac{x}{z}\\\dfrac{b}{c} = \dfrac{y}{z}\end{array} \right.$

Lời giải chi tiết :

ĐK: \(\left\{ \begin{array}{l}x + 1 \ge y \ge 0\\x \ge y + 1 \ge 0\\x \ge y - 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y \ge 1\\x \ge y + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y \ge 1\\x \ge 2\end{array} \right.\,\,\left( {x,y \in N} \right)\)

\(\begin{array}{l}C_{x + 1}^y:C_x^{y + 1}:C_x^{y - 1} = 6:5:2 \Rightarrow \left\{ \begin{array}{l}\dfrac{{C_{x + 1}^y}}{{C_x^{y + 1}}} = \dfrac{6}{5}\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\dfrac{{C_{x + 1}^y}}{{C_x^{y - 1}}} = \dfrac{6}{2} = 3\,\,\left( 2 \right)\end{array} \right.\\\left( 1 \right) \Leftrightarrow \dfrac{{\dfrac{{\left( {x + 1} \right)!}}{{y!\left( {x + 1 - y} \right)!}}}}{{\dfrac{{x!}}{{\left( {y + 1} \right)!\left( {x - y - 1} \right)!}}}} = \dfrac{6}{5}\\ \Leftrightarrow \dfrac{{\left( {x + 1} \right)!}}{{y!\left( {x + 1 - y} \right)!}}.\dfrac{{\left( {y + 1} \right)!\left( {x - y - 1} \right)!}}{{x!}} = \dfrac{6}{5}\\ \Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {y + 1} \right)}}{{\left( {x - y} \right)\left( {x - y + 1} \right)}} = \dfrac{6}{5}\,\,\,\left( 3 \right)\\\left( 2 \right) \Leftrightarrow \dfrac{{\dfrac{{\left( {x + 1} \right)!}}{{y!\left( {x + 1 - y} \right)!}}}}{{\dfrac{{x!}}{{\left( {y - 1} \right)!\left( {x - y + 1} \right)!}}}} = 3\\ \Leftrightarrow \dfrac{{\left( {x + 1} \right)!}}{{y!\left( {x + 1 - y} \right)!}}\dfrac{{\left( {y - 1} \right)!\left( {x - y + 1} \right)!}}{{x!}} = 3\\ \Leftrightarrow \dfrac{{x + 1}}{y} = 3 \Rightarrow x = 3y - 1\end{array}\)

Thay vào (3) ta có:

\(\begin{array}{l}\dfrac{{3y\left( {y + 1} \right)}}{{\left( {2y - 1} \right)2y}} = \dfrac{6}{5}\\ \Leftrightarrow \dfrac{{y + 1}}{{4y - 2}} = \dfrac{2}{5} \Leftrightarrow 5y + 5 = 8y - 4\\ \Leftrightarrow 3y = 9 \Leftrightarrow y = 3\,\,\left( {tm} \right) \Rightarrow x = 8\,\,\left( {tm} \right)\\ \Rightarrow x + y = 11\end{array}\)

Câu 16 :

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;4} \right]\) sao cho \(f\left( { - 1} \right) = 2\), \(f\left( 4 \right) = 7\). Có thể nói gì về số nghiệm của phương trình \(f\left( x \right) = 5\) trên đoạn \([ - 1;4]\):

  • A.

    Vô nghiệm.

  • B.

    Có ít nhất một nghiệm.

  • C.

    Có đúng một nghiệm.

  • D.

    Có đúng hai nghiệm.

Đáp án : B

Phương pháp giải :

Xét hàm \(g\left( x \right) = f\left( x \right) - 5\) trên đoạn \([ - 1;4]\), tìm số nghiệm của \(g\left( x \right)\) trong đoạn đó và kết luận.

Lời giải chi tiết :

Ta có \(f\left( x \right) = 5 \Leftrightarrow f\left( x \right) - 5 = 0\). Đặt \(g\left( x \right) = f\left( x \right) - 5.\) Khi đó

\(\left\{ \begin{array}{l}g\left( { - 1} \right) = f\left( { - 1} \right) - 5 = 2 - 5 =  - 3\\g\left( 4 \right) = f\left( 4 \right) - 5 = 7 - 5 = 2\end{array} \right. \Rightarrow g\left( { - 1} \right)g\left( 4 \right) < 0.\)

Vậy phương trình \(g\left( x \right) = 0\) có ít nhất một nghiệm thuộc khoảng \(\left( {1;4} \right)\) hay phương trình \(f\left( x \right) = 5\) có ít nhất một nghiệm thuộc khoảng \(\left( {1;4} \right)\).

Câu 17 :

Tính $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}$

  • A.

    $\dfrac{{23}}{2}$.

  • B.

    $24$.      

  • C.

    $\dfrac{3}{2}$.          

  • D.

    $3$.

Đáp án : D

Phương pháp giải :

- Biến đổi biểu thức, đưa về dạng $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[n]{{1 + nx}} - 1}}{x}$

- Nhân liên hợp.

Lời giải chi tiết :

Ta có:

$\begin{array}{l}\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1\\ = \sqrt {1 + 2x}  - \sqrt {1 + 2x}  + \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}} - \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}} + \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1\\ = \left( {\sqrt {1 + 2x}  - 1} \right) + \sqrt {1 + 2x} \left( {\sqrt[3]{{1 + 3x}} - 1} \right) + \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\left( {\sqrt[4]{{1 + 4x}} - 1} \right)\end{array}$

$\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sqrt {1 + 2x}  - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\dfrac{{\sqrt[3]{{1 + 3x}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\dfrac{{\sqrt[4]{{1 + 4x}} - 1}}{x}} \right)\end{array}$

Tính:

$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sqrt {1 + 2x}  - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {1 + 2x}  - 1} \right)\left( {\sqrt {1 + 2x}  + 1} \right)}}{{x\left( {\sqrt {1 + 2x}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{2x}}{{x\left( {\sqrt {1 + 2x}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{\sqrt {1 + 2x}  + 1}} = \dfrac{2}{{1 + 1}} = 1$

$\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\dfrac{{\sqrt[3]{{1 + 3x}} - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\dfrac{{\left( {\sqrt[3]{{1 + 3x}} - 1} \right)\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}{{x.\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}} \right)\\ = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\dfrac{{3x}}{{x.\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{3\sqrt {1 + 2x} }}{{\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}} \right) = \dfrac{{3.1}}{{1 + 1 + 1}} = 1\end{array}$

$\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\dfrac{{\sqrt[4]{{1 + 4x}} - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\dfrac{{\left( {\sqrt[4]{{1 + 4x}} - 1} \right)\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}} \right)\\ = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\dfrac{{4x}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}} \right)\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{4\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}}}{{{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1}} = \dfrac{{4.1.1}}{{1 + 1 + 1 + 1}} = 1\end{array}$

Vậy $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x} = 1 + 1 + 1 = 3$

Câu 18 :

Viết phương trình tiếp tuyến $d$ của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm có hoành độ \({x_0}\) thỏa mãn \(f''\left( {{x_0}} \right) = 0?\) 

  • A.

    \(3x + y - 3 = 0\) 

  • B.

    \(3x - y - 3 = 0\) 

  • C.

    \( - 3x + y - 3 = 0\) 

  • D.

    \(3x + y + 3 = 0\) 

Đáp án : A

Phương pháp giải :

- Tìm điểm có hoành độ \({x_0}\) thuộc đồ thị hàm số.

- Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_o};{y_0}} \right)\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Lời giải chi tiết :

\(\begin{array}{l}y = f\left( x \right) = {x^3} - 3{x^2} + 2\\f'\left( x \right) = 3{x^2} - 6x,f''\left( x \right) = 6x - 6 = 0 \Leftrightarrow x = 1 \Rightarrow y = 0 \Rightarrow M\left( {1;0} \right)\end{array}\)

\(y'\left( 1 \right) =  - 3 \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại \(M\left( {1;0} \right)\) là \(y =  - 3\left( {x - 1} \right) + 0 \Leftrightarrow 3x + y - 3 = 0\)

Câu 19 :

Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :

  • A.

    $1$ 

  • B.

    $2$ 

  • C.

    $3$ 

  • D.

    $4$ 

Đáp án : D

Phương pháp giải :

Lấy điểm $A$ bất kì thuộc \({\Delta _1}\), tìm ảnh $A'$  của $A$ qua phép vị tự tâm $I$ tỉ số $k$.

Thay tọa độ điểm $A'$  vừa tìm được vào phương trình đường thẳng \({\Delta _2}\).

Lời giải chi tiết :

Lấy \(A\left( { - 1;0} \right) \in {\Delta _1}\), gọi \(A'\left( {x;y} \right)\) là ảnh của $A$ qua phép vị tự tâm $I$ tỉ số $k$ ta có : \(\overrightarrow {IA'}  = k\overrightarrow {IA} \)

\(\begin{array}{l} \Rightarrow \left( {x - 2;y - 1} \right) = k\left( { - 3; - 1} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 2 =  - 3k\\y - 1 =  - k\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x =  - 3k + 2\\y =  - k + 1\end{array} \right. \Rightarrow A'\left( { - 3k + 2; - k + 1} \right)\\{V_{\left( {I;k} \right)}}\left( {{\Delta _1}} \right) = {\Delta _2},\,\,{V_{\left( {I;k} \right)}}\left( A \right) = A' \Rightarrow A' \in {\Delta _2}\end{array}\)

Thay tọa độ điểm $A'$  vào phương trình đường thẳng \({\Delta _2}\) ta có:

\( - 3k + 2 - 2\left( { - k + 1} \right) + 4 = 0 \Leftrightarrow  - k + 4 = 0 \Leftrightarrow k = 4\)

Câu 20 :

Cho mặt phẳng $\left( {ABC} \right)$  và hai điểm $D,E$  nằm ngoài mặt phẳng $\left( {ABC} \right)$ . Một đường thẳng $a$  nằm trong mặt phẳng $\left( {ABC} \right)$ . Khẳng định nào sau đây đúng?

  • A.

    Nếu $DE$  song song với $a$  thì tồn tại giao điểm $M$  của $DE$  và mặt phẳng $\left( {ABC} \right)$  nằm ngoài đường thẳng $a$

  • B.

    Nếu $DE$  cắt $a$  tại $M$  thì $M$  là giao điểm của $DE$  và mặt phẳng $\left( {ABC} \right)$ 

  • C.

    Nếu $DE$  cắt $a$  tại $M$  thì tồn tại giao điểm $M$  của $DE$ và mặt phẳng $\left( {ABC} \right)$  nằm ngoài đường thẳng $a$ 

  • D.

    Nếu $DE$  song song với $a$ thì tồn tại giao điểm $M$  của $DE$  và mặt phẳng $\left( {ABC} \right)$ nằm trên đường thẳng $a$ 

Đáp án : B

Phương pháp giải :

Tìm giao điểm của $DE$  và mặt phẳng $\left( {ABC} \right)$ :

+ Cách 1: Nếu tồn tại một đường thẳng $a \subset \left( {ABC} \right)$  và $DE$  cắt $a$  tại $M$  thì $M$  chính là giao điểm của $DE$  và mặt phẳng $\left( {ABC} \right)$

+ Cách 2: Tìm mặt phẳng chứa $DE$  cắt $\left( {ABC} \right)$

Lời giải chi tiết :

Khẳng định B là đúng

Câu 21 :

Cho tứ diện $ABCD.$ Gọi $M, N$ lần lượt là trung điểm của các cạnh $AD $ và $ BC, G$ là trọng tâm tam giác $BCD.$ Khi đó giao điểm của đường thẳng $MG$ và $mp(ABC)$ là:

  • A.

    Điểm $C$

  • B.

    Giao điểm của đường thẳng $MG$ và đường thẳng $AN$

  • C.

    Điểm $N$

  • D.

    Giao điểm của đường thẳng $MG$ và đường thẳng $ BC$

Đáp án : B

Phương pháp giải :

Đừa về cùng mặt phẳng. Tìm trong mặt phẳng $(SAB)$ một đường thẳng cắt $DY.$ Giao điểm của đường thẳng đó và $SO$ chính là giao điểm của $(SAB)$ và $DY.$

Lời giải chi tiết :

Ta có: \(\dfrac{{DM}}{{DA}} \ne \dfrac{{DG}}{{DN}}\,\,\left( {\dfrac{1}{2} \ne \dfrac{2}{3}} \right) \)

\(\Rightarrow \) $MG$ và $AN$ không song song với nhau.

Trong $(ADN)$ gọi \(E = MG \cap AN.\) Mà \(AN \subset \left( {ABC} \right) \Rightarrow MG \cap \left( {ABC} \right) = E.\)

Câu 22 :

Cho tứ diện $ABCD,$ gọi $G$ là trọng tâm tam giác $ACD,$ $M$ thuộc đoạn thẳng $BC$ sao cho $CM = 2MB.$ Chọn mệnh đề đúng trong các mệnh đề sau?

  • A.

    $MG // (ABC)$

  • B.

    $MG // (ABD)$

  • C.

    $MG // CD$

  • D.

    $MG // BD$

Đáp án : B

Phương pháp giải :

- Đưa về cùng một mặt phẳng.

- Sử dụng tính chất trọng tâm của tam giác.

- Áp dụng định lí Ta – let đảo để chứng minh hai đường thẳng song song.

Lời giải chi tiết :

Gọi $E$ là trung điểm của $AD$ ta có \(G \in CE\) và \(\dfrac{{CG}}{{CE}} = \dfrac{2}{3}\)

Vì \(CM = 2MB \Rightarrow \dfrac{{CM}}{{CB}} = \dfrac{2}{3}\)

Xét tam giác $BCE$ có: \(\dfrac{{CG}}{{CE}} = \dfrac{{CM}}{{CB}} = \dfrac{2}{3} \)

\(\Rightarrow \) $MG // BE$ (Định lí Ta – let đảo)

Mà \(BE \subset \left( {ABD} \right)\) \( \Rightarrow \) $MG // (ABD)$

Câu 23 :

Cho tứ diện $ABCD$  có \(AB = a,CD = b,AB \bot CD\). Gọi $I$  và $J$  lần lượt là trung điểm của $AB$  và $CD$ . Mặt phẳng \(\left( \alpha  \right)\) qua $M$  nằm trên đoạn $IJ$  và song song với $AB$ và $CD$. Giao tuyến của mặt phẳng \(\left( \alpha  \right)\) và hình chóp có diện tích bằng bao nhiêu, biết $IJ = 3IM$

  • A.

    \(\dfrac{{2ab}}{3}\) 

  • B.

    \(\dfrac{{2ab}}{9}\)

  • C.

    \(\dfrac{{ab}}{3}\) 

  • D.

    \(\dfrac{{ab}}{9}\) 

Đáp án : B

Phương pháp giải :

- Đưa về cùng mặt phẳng.

- Dựng thiết diện dựa vào các yếu tố song song có trong giả thiết.

- Chứng minh thiết diện là hình chữ nhật giao đó tính diện tích hình chữ nhật đó.

Lời giải chi tiết :

Ta có: \(\left\{ \begin{array}{l}M \in \left( \alpha  \right) \cap \left( {ICD} \right)\\CD\parallel \left( \alpha  \right)\\CD \subset \left( {ICD} \right)\end{array} \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\) và $\left( {ICD} \right)$ là đường thẳng qua $M$  và song song với $CD$  cắt $IC$  tại $L$  và cắt $ID$  tại $N$.

Tương tự \(\left\{ \begin{array}{l}M \in \left( \alpha  \right) \cap \left( {JAB} \right)\\AB\parallel \left( \alpha  \right)\\AB \subset \left( {JAB} \right)\end{array} \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\) và $\left( {JAB} \right)$ là đường thẳng qua $M$ và song song $AB$  cắt $JA$  tại $P$  và cắt $JB$  tại $Q$.

Ta có: \(\left\{ \begin{array}{l}L \in \left( \alpha  \right) \cap \left( {ABC} \right)\\AB\parallel \left( \alpha  \right)\\AB \subset \left( {ABC} \right)\end{array} \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\) với $\left( {ABC} \right)$ là đường thẳng qua $L$ song song với $AB$ cắt $BC$ tại $E$ và cắt $AC$  tại $F$ . Do đó $EF//AB{\rm{ }}\left( 1 \right)$

Tương tự \(\left\{ \begin{array}{l}N \in \left( \alpha  \right) \cap \left( {ABD} \right)\\AB\parallel \left( \alpha  \right)\\AB \subset \left( {ABD} \right)\end{array} \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\)và $\left( {ABD} \right)$  là đường thẳng qua $N$  song song với $AB$  cắt $BD$  tại $H$  và cắt $AD$  tại $G$ .

Do đó $HG//AB\left( 2 \right)$ .

Từ (1) và (2) suy ra EF // HG // AB (*)

Ta có: $\left\{ \begin{array}{l}FG = \left( \alpha  \right) \cap \left( {ACD} \right)\\CD\parallel \left( \alpha  \right)\\CD \subset \left( {ACD} \right)\end{array} \right. \Rightarrow FG\parallel CD\,\,\,\left( 3 \right)$.

Tương tự \(\left\{ \begin{array}{l}EH = \left( \alpha  \right) \cap \left( {BCD} \right)\\CD\parallel \left( \alpha  \right)\\CD \subset \left( {BCD} \right)\end{array} \right. \Rightarrow EH\parallel CD\,\,\left( 4 \right).\)

Từ (*) và (**) suy ra $EFGH$  là hình bình hành.

Mà \(AB \bot CD \Rightarrow EF \bot FG.\) Vậy thiết diện $EFGH$ là hình chữ nhật

\( \Rightarrow {S_{EFGH}} = EF.FG = PQ.LN.\)

Trong tam giác $JAB$, ta có \(\dfrac{{PQ}}{{AB}} = \dfrac{{JM}}{{JI}} = \dfrac{2}{3} \Rightarrow PQ = \dfrac{{2AB}}{3} = \dfrac{{2a}}{3}.\)

Trong tam giác $ICD$  ta có \(\dfrac{{LN}}{{CD}} = \dfrac{{IM}}{{IJ}} = \dfrac{1}{3} \Rightarrow LN = \dfrac{{CD}}{3} = \dfrac{b}{3}.\)

Vậy diện tích thiết diện là: \({S_{EFGH}} = \dfrac{{2a}}{3}.\dfrac{b}{3} = \dfrac{{2ab}}{9}.\)

Câu 24 :

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

  • A.

    $(NOM)$ cắt $(OPM)$

  • B.

    $(MON) // (SBC)$

  • C.

    \(\left( {PON} \right) \cap \left( {MNP} \right) = NP\) 

  • D.

    \(\left( {MNP} \right)//\left( {SBD} \right)\)

Đáp án : B

Phương pháp giải :

\(\left\{ \begin{array}{l}a//\left( \beta  \right)\\b//\left( \beta  \right)\\a \cap b \subset \left( \alpha  \right)\end{array} \right. \Rightarrow \left( \alpha  \right)//\left( \beta  \right)\) hoặc \(\left\{ \begin{array}{l}a//a'\\b//b'\\a \cap b \subset \left( \alpha  \right)\\a',b' \subset \left( \beta  \right)\end{array} \right. \Rightarrow \left( \alpha  \right)//\left( \beta  \right)\)

Lời giải chi tiết :

Dễ dàng chứng minh được $MNOP $ là hình bình hành \( \Rightarrow M,N,O,P\) đồng phẳng \( \Rightarrow A,C\) sai.

Ta có : $MN$ là đường trung bình của tam giác $SAD$ \( \Rightarrow MN//AD//BC\)

$ON$ là đường trung bình của tam giác $SBD$ \( \Rightarrow ON//SB\)

\( \Rightarrow (MON) // (SBC)\)

\( \Rightarrow \) Đáp án B đúng.

Đáp án D sai vì \(N \in \left( {MNP} \right) \cap \left( {SBD} \right)\)

Câu 25 :

Cho hai hình vuông $ABCD,ABEF$ có chung cạnh $AB$ và nằm trong hai mặt phẳng khác nhau. Trên các đường chéo $AC$ và $BF$ ta lấy các điểm $M, N$ sao cho $AM = BN.$ Mặt phẳng $(P)$ chứa $MN$ và song song với $AB$ cắt $AD$ và $AF$ lần lượt tại $M’, N’.$ Khẳng định nào sau đây là đúng?

  • A.

    $AC, BF$ cắt nhau

  • B.

    Tứ giác $MNM’N’$ là hình bình hành

  • C.

    $MN$ song song với $(DEF)$       

  • D.

    $MN$ cắt $(DEF)$

Đáp án : C

Phương pháp giải :

+) Trong (ABCD) qua M kẻ MM’ // AB \(\left( {M' \in AD} \right)\)

    Trong (ABEF) qua N kẻ NN’ // AB \(\left( {N' \in AF} \right)\)

+) Dựa vào phương pháp chứng minh hai mặt phẳng song song: Hai đường thẳng cắt nhau trong mặt phẳng này lần lượt song song với hai đường thẳng trong mặt phẳng kia thì hai mặt phẳng đó song song

và tính chất: Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trong mặt phẳng này song song với mặt phẳng kia.

Lời giải chi tiết :

Trong (ABCD) qua M kẻ MM’ // AB \(\left( {M' \in AD} \right)\)

Trong (ABEF) qua N kẻ NN’ // AB \(\left( {N' \in AF} \right)\)

Ta có:

\(\left\{ \begin{array}{l}\dfrac{{AM'}}{{AD}} = \dfrac{{AM}}{{AC}}\\\dfrac{{AN'}}{{AF}} = \dfrac{{BN}}{{BF}}\\AM = BN;AC = BF\end{array} \right. \Rightarrow \dfrac{{AM'}}{{AD}} = \dfrac{{AN'}}{{AF}} \Rightarrow M'N'//DF\)

Lại có NN’ // AB // EF \( \Rightarrow \left( {MM'N'N} \right)//\left( {DEF} \right)\)

Mà \(MN \subset \left( {MM'N'N} \right) \Rightarrow MN//\left( {DEF} \right)\)

Câu 26 :

Cho hình hộp $ABCD.A'B'C'D'$ có đáy là hình thoi $\widehat {BAD} = {60^0}$$A'A = A'B = A'D$. Gọi $O = AC \cap BD$. Hình chiếu của $A'$ trên $\left( {ABCD} \right)$ là :

  • A.

    trung điểm của $AO.$ 

  • B.

    trọng tâm $\Delta ABD.$

  • C.

    giao của hai đoạn $AC$$BD.$ 

  • D.

    trọng tâm$\Delta BCD.$ 

Đáp án : B

Phương pháp giải :

Sử dụng định nghĩa trục đường tròn đáy để tìm hình chiếu của \(A'\) trên mặt đáy

Lời giải chi tiết :

$A'A = A'B = A'D \Rightarrow $ hình chiếu của \(A'\) trên $\left( {ABCD} \right)$ trùng với \(H\) là tâm đường tròn ngoại tiếp \(\Delta ABD\,\,\left( 1 \right).\)

Mà tứ giác \(ABCD\) là hình thoi và $\widehat {BAD} = {60^0}$ nên \(\Delta BAD\) là tam giác đều \(\left( 2 \right)\)

Từ \(\left( 1 \right)\,\)\(\left( 2 \right) \Rightarrow H\) là trọng tâm \(\Delta ABD\,.\)

Câu 27 :

Cho tam giác \(ABC\) vuông cân tại \(A\)\(BC = a.\) Trên đường thẳng qua \(A\) vuông góc với \(\left( {ABC} \right)\) lấy điểm \(S\) sao cho $SA = \dfrac{{a\sqrt 6 }}{2}$. Tính số đo góc giữa đường thẳng \(SA\)\(\left( {ABC} \right)\)

  • A.

    \(30^\circ \).

  • B.

    \(45^\circ \).

  • C.

    \(60^\circ \).

  • D.

    \(90^\circ \).

Đáp án : D

Lời giải chi tiết :

\(SA \bot \left( {ABC} \right) \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = 90^\circ \).

Câu 28 :

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông tâm $O$, cạnh $a$. Đường thẳng $SO$ vuông góc với mặt phẳng đáy $\left( {ABCD} \right)$ và $SO = \dfrac{{a\sqrt 3 }}{2}$. Tính góc giữa hai mặt phẳng $\left( {SBC} \right)$ và $\left( {ABCD} \right)$.

  • A.

    ${30^0}.$ 

  • B.

    ${45^0}.$

  • C.

    ${60^0}.$        

  • D.

    ${90^0}.$

Đáp án : C

Phương pháp giải :

Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông

Lời giải chi tiết :

Gọi \(Q\) là trung điểm \(BC\), suy ra \(OQ \bot BC\).

Ta có $\left\{ \begin{array}{l}BC \bot OQ\\BC \bot SO\end{array} \right. \Rightarrow BC \bot \left( {SOQ} \right) \Rightarrow BC \bot SQ.$

Do đó

$\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\\\left( {SBC} \right) \supset SQ \bot BC\\\left( {ABCD} \right) \supset OQ \bot BC\end{array} \right. \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SQ;OQ} \right)} = \widehat {SQO}.$

Tam giác vuông $SOQ$, có $\tan \widehat {SQO} = \dfrac{{SO}}{{OQ}} = \sqrt 3  \Rightarrow \widehat {SQO} = {60^0}$

Vậy mặt phẳng $\left( {SBC} \right)$ hợp với mặt đáy $\left( {ABCD} \right)$ một góc ${60^0}.$

Câu 29 :

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi tâm $I$, cạnh $a$, góc $\widehat {BAD} = {60^0}$, $SA = SB = SD = \dfrac{{a\sqrt 3 }}{2}$. Gọi \(\varphi \) là góc giữa hai mặt phẳng $\left( {SBD} \right)$ và $\left( {ABCD} \right).$ Mệnh đề nào sau đây đúng?

  • A.

    $\tan \varphi  = \sqrt 5 .$

  • B.

    $\tan \varphi  = \dfrac{{\sqrt 5 }}{5}.$

  • C.

    $\tan \varphi  = \dfrac{{\sqrt 3 }}{2}.$

  • D.

    $\varphi  = {45^0}.$

Đáp án : A

Phương pháp giải :

Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông

Lời giải chi tiết :

Từ giả thiết suy ra tam giác $ABD$ đều cạnh $a$.

Gọi $H$ là hình chiếu của $S$ trên mặt phẳng $\left( {ABCD} \right)$.

Do $SA = SB = SD$ nên suy ra $H$ là tâm của tam gác đều $ABD$.

Suy ra $AH = \dfrac{2}{3}AI = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3},HI = \dfrac{1}{3}AI = \dfrac{1}{3}\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6}$

và $SH = \sqrt {S{A^2} - A{H^2}}  = \dfrac{{a\sqrt {15} }}{6}.$

Vì $ABCD$ là hình thoi nên $HI \bot BD$. Tam giác $SBD$ cân tại $S$ nên $SI \bot BD$. Do đó $\widehat {\left( {SBD} \right);\left( {ABCD} \right)} = \widehat {\left( {SI;AI} \right)} = \widehat {SIH}.$.

Trong tam vuông $SHI$, có $\tan \widehat {SIH} = \dfrac{{SH}}{{HI}} = \sqrt 5 .$

Câu 30 :

Cho hình chóp $S.ABCD$, có đáy $ABCD$ là hình chữ nhật. Cạnh bên $SA$ vuông góc với đáy, $SA = AB = a$ và $AD = x.a$. Gọi $E$ là trung điểm của $SC$. Tìm $x$, biết khoảng cách từ điểm $E$ đến mặt phẳng $\left( {SBD} \right)$ bằng $h = \dfrac{a}{3}$.

  • A.

    $1.$

  • B.

    $\sqrt 2 .$

  • C.

    $2.$

  • D.

    $4.$

Đáp án : C

Phương pháp giải :

Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng

Lời giải chi tiết :

Ta có $E \in SC$, $EC \cap \left( {SBD} \right) = S \Rightarrow \dfrac{{d\left( {E;\left( {SBD} \right)} \right)}}{{d\left( {C;\left( {SBD} \right)} \right)}} = \dfrac{{d\left( {E;\left( {SBD} \right)} \right)}}{{d\left( {A;\left( {SBD} \right)} \right)}} = \dfrac{{ES}}{{CS}} = \dfrac{1}{2}$

Từ A kẻ $ AK \bot BD\left( {K \in BD} \right)$, kẻ $AH \bot SK\,\,\left( {H \in SK} \right)\,\,\,\,\,\,\left( 1 \right)$.

Ta có: \(\left\{ \begin{array}{l}BD \bot AK\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAK} \right) \Rightarrow BD \bot AH\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow AH \bot \left( {SBD} \right).\)

$ \Rightarrow AH = d\left( {A;\left( {SBD} \right)} \right) = 2.d\left( {E;\left( {SBD} \right)} \right) = \dfrac{{2a}}{3}.$

Mà $\dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{K^2}}} \Rightarrow AK = \dfrac{{SA.AH}}{{\sqrt {S{A^2} - A{H^2}} }} = \dfrac{{2a}}{{\sqrt 5 }}$.

Tam giác $ABD$ vuông tại $A$, có đường cao $AK$.

$ \Rightarrow \dfrac{1}{{A{B^2}}} + \dfrac{1}{{AD{}^2}} = \dfrac{1}{{A{K^2}}} \Leftrightarrow \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^2}{x^2}}} = \dfrac{5}{{4{a^2}}} \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{x^2} = 4\end{array} \right. \Rightarrow x = 2$

Câu 31 :

Cho hình chóp $S.ABC $ có đáy $ABC$ là tam giác vuông tại $B, AB = 3a, BC = 4a.$ Cạnh bên $SA$ vuông góc với đáy. Góc tạo bởi giữa $SC$ và đáy bằng ${60^0}$. Gọi $M$ là trung điểm của $AC,$ tính khoảng cách $d$ giữa hai đường thẳng $AB$ và $SM.$

  • A.

    \(d = a\sqrt 3 .\)

  • B.

    \(d = 5a\sqrt 3 .\)

  • C.

    \(d = \dfrac{{5a}}{2}.\)

  • D.

    \(d = \dfrac{{10a\sqrt 3 }}{{\sqrt {79} }}.\)

Đáp án : D

Phương pháp giải :

Dựa vào phương pháp xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia đưa về tính khoảng cách từ một điểm đến một mặt phẳng

Lời giải chi tiết :

Ta có: \(AC = \sqrt {A{B^2} + B{C^2}}  = 5a\)

Xác định \({60^0} = \widehat {\left( {SC,\left( {ABC} \right)} \right)} = \widehat {\left( {SC,AC} \right)} = \widehat {SCA}\) và \(SA = AC.\tan \widehat {SCA} = 5a\sqrt 3 .\)

Gọi \(N\) là trung điểm \(BC\), suy ra \(MN\parallel AB\).

Lấy điểm \(E\) đối xứng với \(N\) qua \(M\), suy ra \(ABNE\) là hình chữ nhật.

Do đó $d\left( {AB;SM} \right) = d\left( {AB;\left( {SME} \right)} \right) = d\left( {A;\left( {SME} \right)} \right).$

Kẻ \(AK \bot SE\).

Vì \(ME \bot AE,ME \bot SA\) nên \(ME \bot \left( {SAE} \right) \Rightarrow ME \bot AK\)

Mà \(AK \bot SE\) nên \(AK \bot \left( {SME} \right)\)

Khi đó \(d\left( {A;\left( {SME} \right)} \right) = AK = \dfrac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \dfrac{{10a\sqrt 3 }}{{\sqrt {79} }}.\)

Câu 32 :

Cho hàm số  $y = f\left( x \right)$  có bảng biến thiên như sau:

Hàm số đạt cực đại tại điểm:

  • A.

    $x = 2$           

  • B.

    $x = 0$

  • C.

    $x = 3$

  • D.

    $x =  - 1$

Đáp án : A

Phương pháp giải :

+) Hàm số đạt điểm cực trị tại  $x = {x_0}$ khi  $x = {x_0}$ là nghiệm của phương trình  $y' = 0$ .

+) Hàm số đạt cực đại tại  $x = {x_0}$ khi tại  $x = {x_0}$ hàm số đổi dấu từ dương sang âm.

Lời giải chi tiết :

Dựa vào đồ thị hàm số ta thấy hàm số đạt cực đại tại điểm  $x = 2.$

Câu 33 :

Tiếp tuyến kẻ từ điểm $\left( {2;3} \right)$ tới đồ thị hàm số $y = \dfrac{{3x + 4}}{{x - 1}}$ là

  • A.

    $y =  - 28x + 59$ ; $y = x + 1$.

  • B.

    $y = -24x + 51$; $y = x + 1$.

  • C.

    $y =  - 28x + 59$.

  • D.

    $y =  - 28x + 59$; $y =  - 24x + 51$.

Đáp án : C

Phương pháp giải :

Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\,\,\left( d \right)\)

Cho \(M \in \left( d \right)\), tìm \({x_0}\)

Lời giải chi tiết :

$y = \dfrac{{3x + 4}}{{x - 1}} \Rightarrow y' = \dfrac{{ - 7}}{{{{\left( {x - 1} \right)}^2}}}$.

Phương trình tiếp tuyến của đồ thị $\left( C \right):y = \dfrac{{3x + 4}}{{x - 1}}$ tại điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\) với \({x_0} \ne 2\) là:

\(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)\( \Leftrightarrow y = \dfrac{{ - 7}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \dfrac{{3{x_0} + 4}}{{{x_0} - 1}}\).

Vì tiếp tuyến đi qua điểm $\left( {2;\,3} \right)$ nên ta có \(3 = \dfrac{{ - 7}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {2 - {x_0}} \right) + \dfrac{{3{x_0} + 4}}{{{x_0} - 1}}\)\( \Leftrightarrow {x_0} = \dfrac{3}{2}\).

Vậy có một tiếp tuyến thỏa đề bài là: $y = -28x + 59$.

Câu 34 :

Cho hàm số \(f\left( x \right) =  - 4{x^3} + 4x - 1.\) Mệnh đề nào sau đây là sai?

  • A.

    Hàm số đã cho liên tục trên \(\mathbb{R}.\)   

  • B.

    Phương trình \(f\left( x \right) = 0\) không có nghiệm trên khoảng \(\left( { - \infty ;1} \right).\)      

  • C.

    Phương trình \(f\left( x \right) = 0\) có nghiệm trên khoảng \(\left( { - 2;0} \right).\)             

  • D.

    Phương trình \(f\left( x \right) = 0\) có ít nhất hai nghiệm trên khoảng \(\left( { - 3;\dfrac{1}{2}} \right).\)

Đáp án : B

Phương pháp giải :

Xét tính đúng sai của từng đáp án và kết luận.

Lời giải chi tiết :

(i) Hàm \(f\left( x \right)\) là hàm đa thức nên liên tục trên \(\mathbb{R}\) nên A đúng.

(ii) Ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) =  - 1 < 0\\f\left( { - 2} \right) = 23 > 0\end{array} \right. \Rightarrow f\left( x \right) = 0\) có nghiệm \({x_1}\) trên \(\left( { - 2;1} \right)\), mà $\left( { - 2; - 1} \right) \subset \left( { - 2;0} \right) \subset \left( { - \infty ;1} \right)$ nên B sai và C đúng.

(iii) Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) =  - 1 < 0\\f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} > 0\end{array} \right. \Rightarrow f\left( x \right) = 0\) có nghiệm \({x_2}\) thuộc \(\left( {0;\dfrac{1}{2}} \right).\) Kết hợp với (1) suy ra \(f\left( x \right) = 0\) có các nghiệm \({x_1},\,\,{x_2}\) thỏa: \( - 3 < {x_1} <  - 1 < 0 < {x_2} < \dfrac{1}{2}\) nên D đúng.

Câu 35 :

Cho tứ diện \(ABCD\) có \(AB \bot CD\) và \(AC \bot BD\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên \(mp(BCD)\). Chọn khẳng định đúng :

  • A.

    \(H\) là trọng tâm tam giác \(BCD\).

  • B.

    \(CD \bot (ACH)\).

  • C.

    \(AD \bot BC\).

  • D.

    Các khẳng định trên đều đúng.

Đáp án : C

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}CD \bot AB\\CD \bot AH\end{array} \right. \Rightarrow CD \bot (ABH) \Rightarrow CD \bot BH\). Tương tự \(BD \bot CH\)

Suy ra \(H\) là trực tâm \(\Delta BCD\). Suy ra đáp án A, B, D sai.

Ta có \(\left\{ \begin{array}{l}BC \bot AH\\BC \bot DH\end{array} \right. \Rightarrow BC \bot AD\), suy ra C đúng.

\( \to \) Chọn đáp án C.

Câu 36 :

Cho hình chóp \(S.ABC\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tâm \(O\). Cạnh bên \(SA = 2a\) và vuông góc với mặt đáy \(\left( {ABCD} \right)\). Gọi \(\varphi \) là góc giữa \(SO\) và mặt phẳng \(\left( {ABCD} \right)\). Mệnh đề nào sau đây đúng?

  • A.

    \(\tan \varphi  = 2\sqrt 2 .\)

  • B.

    \(\varphi  = {60^0}.\)

  • C.

    \(\tan \varphi  = 2.\).           

  • D.

    \(\varphi  = {45^0}.\)

Đáp án : A

Phương pháp giải :

Bước 1: Tìm hình chiếu vuông góc của \(SO\) trên mặt đáy rồi suy ra góc giữa đường thẳng \(SO\) và mặt phẳng đáy.

Sử dụng lý thuyết: 

Góc giữa đường thẳng và mặt phẳng (khác \({90^0}\)) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Bước 2: Tính góc ở trên dựa vào các tỉ số lượng giác trong tam giác vuông.

Lời giải chi tiết :

Bước 1:

Vì \(SA \bot \left( {ABCD} \right)\) nên hình chiếu vuông góc của \(SO\) trên mặt đáy \(\left( {ABCD} \right)\) là \(AO\).

Do đó \(\widehat {\left( {SO,\left( {ABCD} \right)} \right)} = \widehat {\left( {SO,OA} \right)} = \widehat {SOA}.\)

Bước 2:

Trong tam giác vuông \(SAO\), ta có \(\tan \widehat {SOA} = \dfrac{{SA}}{{OA}} = 2\sqrt 2 .\)

Vậy \(SO\) hợp với mặt đáy \(\left( {ABCD} \right)\) một góc nhọn \(\varphi \) thỏa mãn \(\tan \varphi  = 2\sqrt 2 \).

Câu 37 :

Đồ thị hàm số \(y = \tan x\) nhận đường thẳng nào sau đây là tiệm cận?

  • A.

    \(y = \dfrac{\pi }{3} + k\pi \left( {k \in Z} \right)\)

  • B.

    \(x = k\pi \left( {k \in Z} \right)\)

  • C.

    \(x = \dfrac{\pi }{2} + k\pi \left( {k \in Z} \right)\)

  • D.

    \(y = \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\)

Đáp án : C

Phương pháp giải :

Sử dụng tiệm cận của đồ thị hàm số \(y = \tan x\).

Lời giải chi tiết :

Đồ thị hàm số \(y = \tan x\) nhận các đường thẳng \(x = \dfrac{\pi }{2} + k\pi \left( {k \in Z} \right)\) làm tiệm cận đứng.

Chú ý

Một số em có thể sẽ chọn nhầm đáp án A vì nhìn nhầm thành \(x = \dfrac{\pi }{2} + k\pi \left( {k \in Z} \right)\) là sai.

Câu 38 :

Tìm tập giá trị nhỏ nhất, giá trị lớn nhất của hàm số sau

\(y = 3{\left( {3\sin x + 4\cos x} \right)^2} + 4\left( {3\sin x + 4\cos x} \right) + 1\)

  • A.

    \(\min y = \dfrac{1}{3};\max y = 96\)

  • B.

    \(\min y = \dfrac{1}{3};\max y = 6\)

  • C.

    \(\min y =  - \dfrac{1}{3};\max y = 96\)

  • D.

    \(\min y = 2;\max y = 6\)

Đáp án : C

Phương pháp giải :

- Đặt \(t = 3.\sin x + 4.\cos x\) và tìm điều kiện của \(t\).

- Tìm GTNN của hàm số theo \(t\) và kết luận.

Lời giải chi tiết :

Đặt \(t = 3.\sin x + 4.\cos x\), theo bất đẳng thức Bunhiacopxki, ta có:

$\begin{array}{l}
{t^2} = {\left( {3\sin x + 4\cos x} \right)^2}\\
\le \left( {{3^2} + {4^2}} \right)\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\\
= 25.1 = 25\\
\Rightarrow {t^2} \le 25 \Rightarrow - 5 \le t \le 5
\end{array}$

Xét hàm số \(y = 3{t^2} + 4t + 1 \) trên \([-5;5]\).

Hàm số \(y = 3{t^2} + 4t + 1 \) là hàm bậc hai có:

$\begin{array}{l}
- \frac{b}{{2a}} = - \frac{2}{3} \in \left[ { - 5;5} \right]\\
y\left( { - \frac{2}{3}} \right) = - \frac{1}{3}\\
y\left( { - 5} \right) = 56\\
y\left( 5 \right) = 96
\end{array}$

Ta có bảng biến thiên:

\( \Rightarrow \min y =  - \dfrac{1}{3}\) khi \(t=- \dfrac{1}{3}\)

\(\max y = 96\) khi \(t=5\).

Câu 39 :

Trên giá sách có $6$ quyển Văn khác nhau, $5$ quyển sách Toán khác nhau và $9$ quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn?

  • A.

    $54$

  • B.

    $405$

  • C.

    $30$

  • D.

    $129$

Đáp án : D

Phương pháp giải :

+) Xét từng trường hợp:

- Có \(1\) quyển Văn và \(1\) quyển Toán: sử dụng quy tắc nhân.

- Có \(1\) quyển Toán và \(1\) quyển Tiếng Anh: sử dụng quy tắc nhân.

- Có \(1\) quyển Văn và \(1\) quyển Tiếng Anh: sử dụng quy tắc nhân.

+) Sử dụng quy tắc cộng để tính số cách chọn hai quyển sách khác nhau.

Lời giải chi tiết :

Theo quy tắc nhân ta có:

$6.5 = 30$ cách chọn một quyển Văn và một quyển Toán khác nhau.

$6.9 = 54$ cách chọn một quyển Văn và một quyển Tiếng Anh khác nhau.

$5.9 = 45$ cách chọn một quyển Toán và một quyển Tiếng Anh khác nhau.

Theo quy tắc cộng ta có số cách chọn hai quyển sách khác môn là: $30 + 54 + 45 = 129$ cách.

Câu 40 :

Để phương trình \({\sin ^2}x + 2\left( {m + 1} \right)\sin x - 3m\left( {m - 2} \right) = 0\) có nghiệm, các giá trị của tham số m là:

  • A.

    \(\left[ \begin{array}{l} - \dfrac{1}{2} \le m \le \dfrac{1}{2}\\1 \le m \le 2\end{array} \right.\)

  • B.

    \(\left[ \begin{array}{l} - \dfrac{1}{3} \le m \le \dfrac{1}{3}\\1 \le m \le 3\end{array} \right.\)

  • C.

    \(\left[ \begin{array}{l} - 2 \le m \le  - 1\\0 \le m \le 1\end{array} \right.\)

  • D.

    \(\left[ \begin{array}{l} - 1 \le m \le 1\\3 \le m \le 4\end{array} \right.\)

Đáp án : B

Phương pháp giải :

Đặt \(\sin x = t\,\,\left( { - 1 \le t \le 1} \right)\), tìm điều kiện để phương trình ẩn \(t\) có nghiệm trong đoạn \(\left[ { - 1;1} \right]\).

Lời giải chi tiết :

\({\sin ^2}x + 2\left( {m + 1} \right)\sin x - 3m\left( {m - 2} \right) = 0\,\,\,\left( * \right)\)

Đặt \(\sin x = t\,\,\left( { - 1 \le t \le 1} \right)\) khi đó phương trình có dạng \({t^2} + 2\left( {m + 1} \right)t - 3m\left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\)

Ta có: \(\Delta ' = {\left( {m + 1} \right)^2} + 3m\left( {m - 2} \right) = 4{m^2} - 4m + 1 = {\left( {2m - 1} \right)^2} \ge 0\,\,\forall m \in R\)

TH1: \(\Delta ' = 0 \Leftrightarrow m = \dfrac{1}{2}\) phương trình (1) có nghiệm  \(t =  - m - 1 = \dfrac{{ - 1}}{2} - 1 =  - \dfrac{3}{2}\,\,\left( {ktm} \right)\)

TH2: \(\Delta ' > 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Khi đó phương trình có 2 nghiệm

\(\left[ \begin{array}{l}{t_1} =  - m - 1 + 2m - 1 = m - 2\\{t_2} =  - m - 1 - 2m + 1 =  - 3m\end{array} \right.\)

Để phương trình (*) có nghiệm thì phương trình (1) có nghiệm \( - 1 \le t \le 1\)

\( \Leftrightarrow \left[ \begin{array}{l} - 1 \le m - 2 \le 1\\ - 1 \le  - 3m \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 \le m \le 3\\ - \dfrac{1}{3} \le m \le \dfrac{1}{3}\end{array} \right.\)

Câu 41 :

Nghiệm của phương trình \(\cos 7x\cos 5x - \sqrt 3 \sin 2x = 1 - \sin 7x\sin 5x\) là:

  • A.

    $\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{3} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$           

  • B.

    $\left[ \begin{array}{l}x = k\pi \\x =  - \dfrac{\pi }{3} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$

  • C.

    $x = k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)$

  • D.

    $\left[ \begin{array}{l}x = k2\pi \\x =  - \dfrac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$

Đáp án : B

Phương pháp giải :

Bước 1: Đưa về phương trình $a.\sin x+b.\cos x=c$

Bước 2: Chia cả 2 vế cho $\sqrt{a^2+b^2}$ và đưa về phương trình lượng giác cơ bản

Sử dụng công thức \(\cos a\cos b - \sin a\sin b = \cos \left( {a + b} \right)\)

Bước 3: Giải phương trình lượng giác

Sử dụng công thức \(\cos x = \cos y \Leftrightarrow x =  \pm y + k2\pi \)

Lời giải chi tiết :

Bước 1:

$\begin{array}{l}\cos 7x\cos 5x - \sqrt 3 \sin 2x = 1 - \sin 7x\sin 5x\\ \Leftrightarrow \cos 7x\cos 5x + \sin 7x\sin 5x - \sqrt 3 \sin 2x = 1\\ \Leftrightarrow \cos \left( {7x - 5x} \right) - \sqrt 3 \sin 2x = 1\\ \Leftrightarrow \cos 2x - \sqrt 3 \sin 2x = 1\end{array}$

Bước 2:

$ \Leftrightarrow \dfrac{1}{2}\cos 2x - \dfrac{{\sqrt 3 }}{2}\sin 2x = \dfrac{1}{2}\\ \Leftrightarrow \cos 2x\cos \dfrac{\pi }{3} - \sin 2x\sin \dfrac{\pi }{3} = \cos \dfrac{\pi }{3}\\ \Leftrightarrow \cos \left( {2x + \dfrac{\pi }{3}} \right) = \cos \dfrac{\pi }{3}$

Bước 3:

$\Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{3} = \dfrac{\pi }{3} + k2\pi \\2x + \dfrac{\pi }{3} =  - \dfrac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  - \dfrac{\pi }{3} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)$

Câu 42 :

Giá trị của $n$ thỏa mãn $3A_n^2 - A_{2n}^2 + 42 = 0$ là

  • A.

    $9$.

  • B.

    $8$.

  • C.

    $6$.

  • D.

    $10$.

Đáp án : C

Phương pháp giải :

Sử dụng công thức \(A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}}\) thay vào giải phương trình ẩn \(n\)

Lời giải chi tiết :

* PP tự luận:

+ PT \( \Leftrightarrow 3.\dfrac{{n!}}{{\left( {n - 2} \right)!}} - \dfrac{{\left( {2n} \right)!}}{{\left( {2n - 2} \right)!}} + 42 = 0\,\,,\,\,\left( {n \in \mathbb{N},n \ge 2} \right)\)\( \Leftrightarrow 3n\left( {n - 1} \right) - 2n.\left( {2n - 1} \right) + 42 = 0\)\( \Leftrightarrow  - {n^2} - n + 42 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 6\,\left( {TM} \right)\\n =  - 7\,\left( L \right)\end{array} \right.\)\( \Leftrightarrow n = 6\).

Chú ý

+ Nhập vào máy tính PT $3A_n^2 - A_{2n}^2 + 42 = 0$.

Tính (CALC) lần lượt với \(X = 9\) (không thoả); với \(X = 8\) (không thoả), với \(X = 6\) (thoả), với \(X = 10\) (không thoả).

Câu 43 :

Một con xúc sắc cân đối và đồng chất được gieo ba lần. Gọi $P$ là xác suất để tổng số chấm xuất hiện ở hai lần gieo đầu bằng số chấm xuất hiện ở lần gieo thứ ba. Khi đó $P$ bằng:

  • A.

    $\dfrac{{10}}{{216}}$.

  • B.

    $\dfrac{{15}}{{216}}$.

  • C.

    $\dfrac{{16}}{{216}}$.

  • D.

    $\dfrac{{12}}{{216}}$.

Đáp án : B

Phương pháp giải :

- Tính số phần tử của không gian mẫu \(n\left( \Omega  \right)\).

- Liệt kê các khả năng có lợi cho biến cố.

- Tính xác suất theo công thức \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết :

$n(\Omega ) = 6.6.6 = 216$. Gọi $A$:”tổng số chấm xuất hiện ở hai lần gieo đầu bằng số chấm xuất hiện ở lần gieo thứ ba”.

Ta chỉ cần chọn 1 bộ 2 số chấm ứng với hai lần gieo đầu sao cho tổng của chúng thuộc tập $\{ 1;2;3;4;5;6\} $ và số chấm lần gieo thứ ba sẽ là tổng hai lần gieo đầu.

Liệt kê ra ta có:

${\rm{\{ (1;1);(1;2);(1;3);(1;4);(1;5);(2;1);(2;2);(2;3);(2;4);(3;1);(3;2);(3;3);(4;1);(4;2);(5;1)\} }}$

Do đó $n(A) = 15$. Vậy $P(A) = \dfrac{{15}}{{216}}$.

Câu 44 :

Một gia đình cần khoan một cái giếng để lấy nước. Họ thuê một đội khoan giếng nước đến để khoan giếng nước. Biết giá của mét khoan đầu tiên là 80.000 đồng, kể từ mét khoan thứ 2 giá của mỗi mét khoan tăng thêm 5000 đồng so với giá của mét khoan trước đó. Biết cần phải khoan sâu xuống 50m mới có nước. Vậy hỏi phải trả bao nhiêu tiền để khoan cái giếng đó?

  • A.

    $5.2500.000$ đồng

  • B.

    $10.125.000$ đồng

  • C.

    $4.000.000$ đồng

  • D.

    $4.245.000$ đồng

Đáp án : B

Phương pháp giải :

Sử dụng công thức \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết :

Giá tiền khoan mỗi mét (bắt đầu từ mét đầu tiên) lập thành cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 80\,000,\,\,d = 5\,000.\)

Do cần khoan 50 mét nên tổng số tiền cần trả là

\({u_1} + {u_2} +  \cdots  + {u_{50}} = {S_{50}} = 50{u_1} + \dfrac{{50.49}}{2}d\) \( = 50.80\,000 + 1225.5\,000 = 10\,125\,000\)

Câu 45 :

Trong các dãy số $\left( {{u_n}} \right)$ cho bởi số hạng tổng quát ${u_n}$ sau, dãy số nào là một cấp số nhân?

  • A.

    \({u_n} = 7 - 3n.\)

  • B.

    \({u_n} = 7 - {3^n}.\)

  • C.

    \({u_n} = \dfrac{7}{{3n}}.\)

  • D.

    \({u_n} = {7.3^n}.\)

Đáp án : D

Phương pháp giải :

Nhận xét dạng của các số hạng \({u_n}\) ở mỗi đáp án và kết luận.

Lời giải chi tiết :

Dãy \({u_n} = {7.3^n}\) là cấp số nhân có \(\left\{ \begin{array}{l}{u_1} = 21\\q = 3\end{array} \right.\)

Câu 46 :

Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 - 4t\\y = 1 + t\end{array} \right..\)Ảnh của đường thẳng \(\Delta \) qua phép đối xứng tâm \(I\left( { - 2;2} \right)\) có phương trình là:

  • A.

    \(x + 4y - 5 = 0.\)

  • B.

    \(x + 4y - 6 = 0.\)

  • C.

    $4x - y + 1 = 0.$

  • D.

    \(4x - y - 1 = 0.\)

Đáp án : B

Phương pháp giải :

- Đưa \(\Delta \) về phương trình tổng quát.

- Sử dụng biểu thức tọa độ của phép đối xứng tâm \(I\left( {a;b} \right)\) là $\left\{ {\begin{array}{*{20}{c}}{x' = 2a - x}\\{y' = 2b - y}\end{array}} \right.$

- Rút \(x,y\) theo \(x',y'\) và thay vào phương trình của \(\Delta \) suy ra phương trình mới.

Lời giải chi tiết :

Đường thẳng \(\Delta \) có phương trình tổng quát là \(x + 4y - 6 = 0.\)

Biểu thức tọa độ của phép đối xứng tâm \(I\left( {a;b} \right)\) là $\left\{ {\begin{array}{*{20}{c}}{x' = 2a - x}\\{y' = 2b - y}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x =  - 4 - x'}\\{y = 4 - y'}\end{array}} \right..$

Thay vào phương trình đường thẳng \(d\) ta được \(\left( { - 4 - x'} \right) + 4\left( {4 - y'} \right) - 6 = 0\)

\( \Leftrightarrow x' + 4y' - 6 = 0\).

Chú ý

Cách 2. Nhận thấy \(I\left( { - 2;2} \right) \in \Delta \) nên ảnh của đường thẳng $\Delta $ qua phép đối xứng tâm \(I\)trùng với chính nó. Vậy ảnh của đường thẳng \(\Delta \) qua phép đối xứng tâm \(I\left( { - 2;2} \right)\) có phương trình là: \(x + 4y - 6 = 0\).

Câu 47 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Tìm số điểm cực trị của hàm số \(y = {2019^{f\left( {f\left( x \right) - 1} \right)}}\).

  • A.

    \(13\)

  • B.

    $11$

  • C.

    $10$

  • D.

    $12$

Đáp án : D

Phương pháp giải :

Xác định số điểm mà đạo hàm đổi dấu của hàm số \(y = {2019^{f\left( {f\left( x \right) - 1} \right)}}\).

Lời giải chi tiết :

Ta có: \(y = {2019^{f\left( {f\left( x \right) - 1} \right)}} \Rightarrow y' = {2019^{f\left( {f\left( x \right) - 1} \right)}}.f'\left( {f\left( x \right) - 1} \right).f'\left( x \right)\ln 2019\)

\(f'\left( {f\left( x \right) - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) - 1 =  - 1\\f\left( x \right) - 1 = 1\\f\left( x \right) - 1 = 3\\f\left( x \right) - 1 = 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f\left( x \right) = 2\\f\left( x \right) = 4\\f\left( x \right) = 7\end{array} \right.\)

\(f'\left( {f\left( x \right) - 1} \right) = 0\) có tất cả: \(2 + 5 + 2 + 1 = 10\) nghiệm

(trong đó, có các nghiệm \(x = 3,\,\,x = 6\) là nghiệm kép, còn lại là nghiệm đơn).

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 1\\x = 3\\x = 6\end{array} \right.\) : có 4 nghiệm

\( \Rightarrow y' = {2019^{f\left( {f\left( x \right) - 1} \right)}}.f'\left( {f\left( x \right) - 1} \right).f'\left( x \right) = 0\) có 12 nghiệm phân biệt, trong đó, \(x = 3,\,\,x = 6\) là nghiệm bội 3, còn lại là nghiệm đơn.

Do đó, số điểm cực trị của hàm số \(y = {2019^{f\left( {f\left( x \right) - 1} \right)}}\) là 12.

Câu 48 :

Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là

  • A.

    \(1\).

  • B.

    \(\dfrac{1}{3}\).

  • C.

    \(\dfrac{2}{3}\).

  • D.

    \(\dfrac{1}{2}\).

Đáp án : D

Phương pháp giải :

Tính \(n\left( \Omega  \right)\) và \(n\left( A \right)\) suy ra xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết :

Số phần tử không gian mẫu \(n\left( \Omega  \right) = 6\).

Gọi biến cố A: “mặt chẵn chấm xuất hiện”

Ta có: \(A = \left\{ {2;4;6} \right\} \Rightarrow n\left( A \right) = 3\).

Vậy xác suất \(P\left( A \right) = \dfrac{3}{6} = \dfrac{1}{2}\).

Câu 49 :

Cho tứ diện \(ABCD\) có \(AB = CD = 4,BC = AD = 5,AC = BD = 6\). \(M\) là điểm thay đổi trong tâm giác \(ABC\). Các đường thẳng qua \(M\) song song với \(AD,BD,CD\) tương ứng cắt mặt phẳng \(\left( {BCD} \right),\left( {ACD} \right),\left( {ABD} \right)\) tại \(A',B',C'\). Giá trị lớn nhất của \(MA'.MB'.MC'\) là

  • A.

    \(\dfrac{{40}}{9}\)

  • B.

    \(\dfrac{{24}}{9}\)

  • C.

    \(\dfrac{{30}}{9}\) 

  • D.

    \(\dfrac{{20}}{9}\)

Đáp án : A

Phương pháp giải :

- Kéo dài \(AM,BM,CM\) cắt các đoạn thẳng \(BC,CA,AB\) lần lượt tại \(H,G,F\).

- Dựng các đường thẳng qua \(M\) và song song với \(AD,BD,CD\) suy ra các điểm \(A',B',C'\).

- Sử dụng định lý Ta – let tính \(MA',MB',MC'\).

- Sử dụng hệ thức \(\dfrac{{{A_1}M}}{{AM}} + \dfrac{{{B_1}M}}{{BM}} + \dfrac{{{C_1}M}}{{CM}} = 1\) đánh giá GTLN của tích \(MA'.MB'.MC'\).

ở đó, \(M\) là một điểm nằm trong tam giác \(ABC\) và \({A_1},{B_1},{C_1}\) lần lượt là các giao điểm của \(AM,BM,CM\) với các cạnh \(BC,CA,AB\).

Lời giải chi tiết :

Trong tam giác \(ABC\), kéo dài \(AM,BM,CM\) cắt các đoạn thẳng \(BC,CA,AB\) lần lượt tại \(H,G,F\).

+) Trong mặt phẳng \(\left( {HAD} \right)\), kẻ \(MA'//AD\).

+) Trong mặt phẳng \(\left( {GBD} \right)\), kẻ \(MB'//BD\).

+) Trong mặt phẳng \(\left( {FCD} \right)\), kẻ \(MC'//CD\).

Từ đó ta được các điểm \(A',B',C'\) cần tìm.

Theo định lý Ta – let ta có: \(\dfrac{{MA'}}{{AD}} = \dfrac{{HM}}{{HA}} \Rightarrow MA' = 5.\dfrac{{MH}}{{AH}}\)

\(\dfrac{{MB'}}{{BD}} = \dfrac{{GM}}{{GB}} \Rightarrow MB' = 6.\dfrac{{MG}}{{BG}}\); \(\dfrac{{MC'}}{{CD}} = \dfrac{{FM}}{{FC}} \Rightarrow MC' = 4.\dfrac{{MF}}{{CF}}\)

\( \Rightarrow MA'.MB'.MC' = 120.\dfrac{{MH}}{{AH}}.\dfrac{{MG}}{{BG}}.\dfrac{{MF}}{{CF}}\).

Trong tam giác \(ABC\) ta có: \(1 = \dfrac{{MH}}{{AH}} + \dfrac{{MG}}{{BG}} + \dfrac{{MF}}{{CF}} \ge 3\sqrt[3]{{\dfrac{{MH}}{{AH}}.\dfrac{{MG}}{{BG}}.\dfrac{{MF}}{{CF}}}}\) \( \Rightarrow \dfrac{{MH}}{{AH}}.\dfrac{{MG}}{{BG}}.\dfrac{{MF}}{{CF}} \le \dfrac{1}{{27}}\)

Do đó \(MA'.MB'.MC' = 120.\dfrac{{MH}}{{AH}}.\dfrac{{MG}}{{BG}}.\dfrac{{MF}}{{CF}} \le 120.\dfrac{1}{{27}} = \dfrac{{40}}{9}\)\( \Rightarrow {\left( {MA'.MB'.MC'} \right)_{\max }} = \dfrac{{40}}{9}\)

Câu 50 :

Cho hàm số \(f\left( x \right)\) có bảng xét dấu có đạo hàm như hình bên dưới

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

  • A.

    \(\left( {0;\dfrac{3}{2}} \right)\)

  • B.

    \(\left( { - \dfrac{1}{2};1} \right)\)

  • C.

    \(\left( { - 2; - \dfrac{1}{2}} \right)\)      

  • D.

    \(\left( {\dfrac{3}{2};3} \right)\)

Đáp án : A

Phương pháp giải :

Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {a;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\,\,\forall x \in \left( {a;b} \right)\) và bằng 0 tại hữu hạn điểm.

Lời giải chi tiết :

Ta có: \(y' =  - 2f'\left( {1 - 2x} \right)\).

Với \(x = 1 \Rightarrow y'\left( 1 \right) =  - 2f'\left( { - 1} \right) > 0 \Rightarrow \) Loại đáp án B, C, D.

Chú ý

Ngoài phương pháp thử HS có thể lập BXD \(y'\), tuy nhiên trong bài tập này, thử là phương pháp tối ưu nhất.

Cách tự luận:

\(\begin{array}{l}y' > 0 \Leftrightarrow  - 2f'\left( {1 - 2x} \right) > 0\\ \Leftrightarrow f'\left( {1 - 2x} \right) < 0 \Leftrightarrow \left[ \begin{array}{l}1 - 2x <  - 3\\ - 2 < 1 - 2x < 0\\0 < 1 - 2x < 1\\1 - 2x > 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x > 2\\\frac{1}{2} < x < \frac{3}{2}\\0 < x < \frac{1}{2}\\x <  - 1\end{array} \right.\end{array}\)

Nên hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {0;\frac{3}{2}} \right),\left( {2; + \infty } \right)\)

(trong khoảng \(\left( {0;\frac{3}{2}} \right)\) chứa điểm \(x = \frac{1}{2}\) làm cho đạo hàm \(f'\left( {1 - 2x} \right) = 0\) vẫn được)

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.