Câu hỏi
Tập hợp các điểm biểu diễn của số phức z trên mặt phẳng tọa độ là đường tròn tâm \(I\left( {0;1} \right)\), bán kính \(R = 3\). Mệnh đề nào dưới đây đúng?
- A \(\left| {z - 1} \right| = 3\).
- B \(\left| {z - i} \right| = 3\).
- C \(\left| {z - i} \right| = \sqrt 3 \).
- D \(\left| {z + i} \right| = 3\).
Phương pháp giải:
Nếu \(\left| {z - \left( {{x_0} + {y_0}i} \right)} \right| = R,\,\,\left( {{x_0},{y_0},R \in \mathbb{R},\,\,R > 0} \right)\) thì tập hợp các điểm biểu diễn của z là đường tròn tâm \(I\left( {{x_0};{y_0}} \right)\), bán kính \(R\).
Lời giải chi tiết:
Tập hợp các điểm biểu diễn của số phức z trên mặt phẳng tọa độ là đường tròn tâm \(I\left( {0;1} \right)\), bán kính \(R = 3\). Khi đó: \(\left| {z - i} \right| = 3\).
Chọn: B