Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm như sau.
Hàm số \(y = - 2f\left( x \right) + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?
- A \(\left( { - 4;2} \right)\).
- B \(\left( { - 1;2} \right)\).
- C \(\left( { - 2; - 1} \right)\).
- D \(\left( {2;4} \right)\).
Phương pháp giải:
Giải bất phương trình \(y'<0\).
Lời giải chi tiết:
Ta có: \(y'=-2f'\left( x \right)<0\Leftrightarrow f'\left( x \right)>0\Leftrightarrow x\in \left( -\infty ;-2 \right)\cup \left( -1;2 \right)\cup \left( 4;+\infty \right)\).
\(\Rightarrow \) Hàm số \(y=-2f\left( x \right)+2019\) nghịch biến trên các khoảng \(\left( -\infty ;-2 \right);\,\,\left( -1;2 \right)\) và \(\left( 4;+\infty \right)\).
Chọn B.