Câu hỏi

Cho hàm số \(f(x) = \sqrt {{x^2} + 3} \). Tính giá trị của biểu thức \(S = f(1) + 4f'(1).\)

  • A \(S = 2.\)
  • B \(S = 4.\)
  • C \(S = 6.\)
  • D \(S = 8.\)

Phương pháp giải:

Sử dụng công thức \(\left( {\sqrt u } \right)' = \dfrac{{u'}}{{2\sqrt u }}\).

Lời giải chi tiết:

Ta có \(f'\left( x \right) = \dfrac{{\left( {{x^2} + 3} \right)'}}{{2\sqrt {{x^2} + 3} }} = \dfrac{{2x}}{{2\sqrt {{x^2} + 3} }} = \dfrac{x}{{\sqrt {{x^2} + 3} }}\)

\( \Rightarrow f'\left( 1 \right) = \dfrac{1}{{\sqrt {1 + 3} }} = \dfrac{1}{2}\).

Ta có: \(f\left( 1 \right) = \sqrt {{1^2} + 3}  = 2\).

\( \Rightarrow S = f\left( 1 \right) + 4f'\left( 1 \right) = 2 + 4.\dfrac{1}{2} = 2 + 2 = 4\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay