Câu hỏi

Cho hình chóp \(S.ABCD\), gọi \(M,\,\,N,\,\,P,\,\,Q\) lần lượt là trung điểm của các cạnh \(SA,SB,SC,SD\). Tính thể tích khối chóp \(S.ABCD\) biết thể tích khối chóp \(S.MNPQ\) là \(1\).

  • A \(16\)
  • B \(8\)
  • C \(2\)
  • D \(4\)

Phương pháp giải:

Sử dụng công thức tính tỉ số thể tích đối với khối chóp tam giác: \(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}}\) với \(M,N,P\) lần lượt thuộc \(SA,SB,SC\).

Lời giải chi tiết:

Ta có: \(\dfrac{{{V_{S.MPQ}}}}{{{V_{S.ADC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SP}}{{SC}}.\dfrac{{SQ}}{{SD}} = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{8}\)

\(\dfrac{{{V_{S.MPN}}}}{{{V_{S.ACB}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SP}}{{SC}}.\dfrac{{SN}}{{SB}} = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{8}\)

Suy ra \(\dfrac{1}{8} = \dfrac{{{V_{S.MPQ}}}}{{{V_{S.ADC}}}} = \dfrac{{{V_{S.MPN}}}}{{{V_{S.ACB}}}} = \dfrac{{{V_{S.MPN}} + {V_{S.MPN}}}}{{{V_{S.ADC}} + {V_{S.ACB}}}} = \dfrac{{{V_{S.MNPQ}}}}{{{V_{S.ABCD}}}}\)

\( \Rightarrow {V_{S.ABCD}} = 8{V_{S.MNPQ}} = 8\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay