Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
- A \(\left( {1; + \infty } \right)\)
- B \(\left( { - 1;0} \right)\)
- C \(\left( { - \infty ;1} \right)\)
- D \(\left( {0;1} \right)\)
Phương pháp giải:
Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số.
Hàm số liên tục trên \(\left( {a;b} \right)\) có \(y' > 0\) với \(x \in \left( {a;b} \right)\) thì hàm số đồng biến trên \(\left( {a;b} \right).\)
Lời giải chi tiết:
Từ BBT ta có hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
Chọn D.