Câu hỏi

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2x - 4\sqrt {6 - x} \) trên \(\left[ { - 3;6} \right]\) . Tổng \(M + m\) có giá trị là 

  • A \( - 12\)
  • B \( - 6\)
  • C \(18\)
  • D \( - 4\)

Phương pháp giải:

Cách 1: Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:

+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)

+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\)  Khi đó:

\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\) 

Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)

Lời giải chi tiết:

TXĐ: \(D = \left( { - \infty ;\;6} \right].\)

Nhập hàm số đã cho vào máy tính và sử dụng chức năng MODE 7 của máy tính để làm bài toán.

+) Nhập hàm số \(f\left( x \right) = 2x - 4\sqrt {6 - x} ;\;\;Start: - 3;\;End:\;6;\;Step:\;\;\dfrac{{6 + 3}}{{19}}\)

Khi đó ta có: 

\(\begin{array}{l} \Rightarrow M = \mathop {Max}\limits_{\left[ { - 3;\;6} \right]} y = 12;\;\;m = \mathop {Min}\limits_{\left[ { - 3;\;6} \right]} y =  - 18.\\ \Rightarrow M + m = 12 - 18 =  - 6.\end{array}\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay