Câu hỏi

Hàm số \(f\left( x \right) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + ... + C_{2019}^{2019}{x^{2019}}\) có bao nhiêu điểm cực trị?

  • A \(0\)
  • B \(2018\)  
  • C \(1\)  
  • D \(2019\)

Phương pháp giải:

+) Số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\)  là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)

+) Sử dụng công thức: \(C_n^0 + C_n^1x + C_n^2{x^2} + ...... + C_n^n{x^n} = {\left( {x + 1} \right)^n}.\)

Lời giải chi tiết:

Ta có: \(f\left( x \right) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + ...... + C_{2019}^{2019}{x^{2019}} = {\left( {x + 1} \right)^{2019}}.\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) = \left[ {{{\left( {x + 1} \right)}^{2019}}} \right]' = 2019{\left( {x + 1} \right)^{2018}}\\ \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 2019{\left( {x + 1} \right)^{2018}} = 0 \Leftrightarrow x = 1\end{array}\)

Vì \(x = 1\) là nghiệm bội \(2018 \Rightarrow x = 1\) không là điểm cực trị của hàm số đã cho.

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay