Câu hỏi

Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên \(\left[ { - 2;0} \right]\) bằng

  • A \({e^2}\)
  • B \( - \frac{2}{e}\)
  • C \( - 1\)
  • D \(0\)

Phương pháp giải:

Cách 1: Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:

+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)

+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\)  Khi đó:

\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\) 

Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)

Lời giải chi tiết:

Ta có:\(y' = {e^{x + 1}} + x{e^{x + 1}} = {e^{x + 1}}\left( {x + 1} \right) = 0 \Leftrightarrow x + 1 = 0 \Leftrightarrow x =  - 1.\)

\( \Rightarrow \left\{ \begin{array}{l}f\left( { - 2} \right) =  - 2{e^{ - 1}} = \frac{{ - 2}}{e}\\f\left( { - 1} \right) =  - {e^0} =  - 1\\f\left( 0 \right) = 0\end{array} \right. \Rightarrow \mathop {Min}\limits_{\left[ { - 2;\;0} \right]} y =  - 1\;\;khi\;\;x =  - 2.\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay