Câu hỏi
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^2};\forall \,x \in \mathbb{R}\) . Số điểm cực trị của hàm số đã cho là:
- A \(3\)
- B \(4\)
- C \(2\)
- D \(1\)
Phương pháp giải:
Số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\) là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 0\) \( \Leftrightarrow x\left( {x - 1} \right){\left( {x + 2} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 2\end{array} \right..\)
Trong đó có \(x = - 2\) là nghiệm bội chẵn của phương trình, còn lại \(x = 0;\;x = 1\) là các nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)
Vậy hàm số có 2 điểm cực trị.
Chọn C.