Câu hỏi

Cho hàm số \(y = f\left( x \right)\)liên tục trên đoạn \(\left[ { - 1;4} \right]\) và có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hỏi hàm số \(g\left( x \right) = f\left( {{x^2} + 1} \right)\) nghịch biến trên khoảng nào trong các khoảng sau?

  • A \(\left( { - 1;1} \right)\).
  • B \(\left( {0;1} \right)\).
  • C \(\left( {1;4} \right)\).
  • D \(\left( {\sqrt 3 ;4} \right)\).

Phương pháp giải:

Giải phương trình \(g'\left( x \right) = 0\), lập bảng xét dấu \(g'\left( x \right)\) và kết luận.

Lời giải chi tiết:

Ta có \(g'\left( x \right) = 2xf'\left( {{x^2} + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} + 1 =  - 1\\{x^2} + 1 = 1\\{x^2} + 1 = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \sqrt 3 \end{array} \right.\).

Các nghiệm trên đều là các nghiệm bội lẻ, do đó đều là cực trị của hàm số \(y = g'\left( x \right)\).

Xét \(x =  - 1\) ta có \(g'\left( { - 1} \right) =  - 2f'\left( 2 \right) > 0\), từ đó ta có bảng xét dấu \(g'\left( x \right)\) như sau :

Dựa vào các đáp án ta thấy hàm số \(y = g\left( x \right)\) nghịch biến trên \(\left( {0;1} \right)\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay