Câu hỏi
Một con lắc lò xo gồm một vật nhỏ có khối lượng m = 200 g và lò xo có độ cứng k, đang dao động điều hòa theo phương thẳng đứng. Chọn gốc tọa độ ở vị trí cần bằng, chiều dương hướng xuống dưới. Đồ thị biểu diễn sự phụ thuộc của lực đàn hồi theo thời gian được cho như hình vẽ. Biết F1 + 3F2+ 6F3 = 0. Lấy g =10 m/s2. Tỉ số thời gian lò xo giãn với thời gian lò xo nén trong một chu kì gần giá trị nào nhất sau đây?
- A 2,46.
- B 1,38.
- C 1,27.
- D 2,15.
Lời giải chi tiết:
Từ đồ thị ta thấy:
Lực đàn hồi tại thời điểm ban đầu: F = F1 = - k(Δl0 + x)
Lực đàn hồi tại vị trí biên dương: F = F2 = - k(Δl0 + A)
Lực đàn hồi tại vị trí biên âm: F = F3 = - k(Δl0 – A)
Gọi Δt là thời gian từ t = 0 đến t = 2/15s
Ta có: \(T + \frac{{\Delta t}}{2} = 2\Delta t \Rightarrow \Delta t = \frac{{2T}}{3} \Rightarrow x = \frac{A}{2}\)
Theo đề bài: \({F_1} + 3{F_2} + 6{F_3} = 0 \Leftrightarrow k\left( {\Delta {l_0} + x} \right) + 3k\left( {\Delta {l_0} + A} \right) + 6k\left( {\Delta {l_0}--A} \right) = 0 \Rightarrow \Delta {l_0} = 0,25A\)
=> Thời gian lo xo nén là : \({t_n} = \frac{{2\alpha }}{{360}}T = \frac{{151}}{{360}}T = 0,42T \Rightarrow {t_g} = T--{t_n} = 0,58T\)
Tỉ số thời gian giãn và nén trong một chu kì: \(\frac{{{t_g}}}{{{t_n}}} = \frac{{0,58}}{{0,42}} = 1,381\) => Chọn B