Câu hỏi

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{\cos ^3}x - \cos 2x\) trên tập hợp \(D = \left[ { - \dfrac{\pi }{3};\dfrac{\pi }{3}} \right]\)

  • A \(\mathop {\max }\limits_{x \in D} f\left( x \right) = 1,\,\,\mathop {\min }\limits_{x \in D} f\left( x \right) = \dfrac{{19}}{{27}}\).                                                                               
  • B  \(\mathop {\max }\limits_{x \in D} f\left( x \right) = \dfrac{3}{4},\,\,\mathop {\min }\limits_{x \in D} f\left( x \right) =  - 3\).
  • C  \(\mathop {\max }\limits_{x \in D} f\left( x \right) = \dfrac{3}{4},\,\,\mathop {\min }\limits_{x \in D} f\left( x \right) = \dfrac{{19}}{{27}}\).                                                             
  • D  \(\mathop {\max }\limits_{x \in D} f\left( x \right) = 1,\,\,\mathop {\min }\limits_{x \in D} f\left( x \right) =  - 3\).

Phương pháp giải:

Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\).

Bước 1: Giải phương trình \(f'\left( x \right) = 0\) và suy ra các nghiêmệm\({x_i} \in \left[ {a;b} \right]\).

Bước 2: Tính \(f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)\).

Bước 3: Kết luận: \(\mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);f\left( b \right);f\left( {{x_i}} \right)} \right\};\,\,\mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);f\left( b \right);f\left( {{x_i}} \right)} \right\}\).

Lời giải chi tiết:

Ta có: \(f\left( x \right) = 2{\cos ^3}x - \cos 2x = 2{\cos ^3}x - 2{\cos ^2}x + 1\)

Đặt \(\cos x = t,\,\,t \in \left[ {\dfrac{1}{2};1} \right]\). Xét hàm số \(g\left( t \right) = 2{t^3} - 2{t^2} + 1\) trên đoạn \(\left[ {\dfrac{1}{2};1} \right]\), ta có:

\(g'\left( t \right) = 6{t^2} - 4t;\,\,g'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\,\,(L)\\t = \dfrac{2}{3}\end{array} \right.\)

Hàm số \(g\left( t \right)\) liên tục trên đoạn \(\left[ {\dfrac{1}{2};1} \right]\) và \(g\left( {\dfrac{1}{2}} \right) = \dfrac{3}{4},\,\,g\left( {\dfrac{2}{3}} \right) = \dfrac{{19}}{{27}},\,\,g\left( 1 \right) = 1\)

\( \Rightarrow \mathop {\max }\limits_{t \in \left[ {\dfrac{1}{2};1} \right]} g\left( t \right) = 1,\,\,\mathop {\min }\limits_{t \in \left[ {\dfrac{1}{2};1} \right]} g\left( t \right) = \dfrac{{19}}{{27}}\,\,\, \Rightarrow \mathop {\max }\limits_{x \in D} f\left( x \right) = 1,\,\,\mathop {\min }\limits_{x \in D} f\left( x \right) = \dfrac{{19}}{{27}}\).

Chọn: A


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay