Câu hỏi

Với \(x \in \left( {0;\dfrac{\pi }{2}} \right)\), hàm số \(y = 2\sqrt {\sin x}  - 2\sqrt {\cos x} \) có đạo hàm là:

  • A  \(y' = \dfrac{1}{{\sqrt {\sin x} }} - \dfrac{1}{{\sqrt {\cos x} }}\).                                                    
  • B  \(y' = \dfrac{1}{{\sqrt {\sin x} }} + \dfrac{1}{{\sqrt {\cos x} }}\).                                       
  • C  \(y' = \dfrac{{\cos x}}{{\sqrt {\sin x} }} - \dfrac{{\sin x}}{{\sqrt {\cos x} }}\).                                                  
  • D \(y' = \dfrac{{\cos x}}{{\sqrt {\sin x} }} + \dfrac{{\sin x}}{{\sqrt {\cos x} }}\).

Phương pháp giải:

Đạo hàm: \(\left( {\sqrt {u\left( x \right)} } \right)' = \dfrac{{\left( {u\left( x \right)} \right)'}}{{2\sqrt {u\left( x \right)} }}\).

Lời giải chi tiết:

\(y' = \dfrac{{2\left( {\sin \,x} \right)'}}{{2\sqrt {\sin x} }} - \dfrac{{2\left( {\cos x} \right)'}}{{2\sqrt {\cos x} }} = \dfrac{{\cos x}}{{\sqrt {\sin x} }} + \dfrac{{\sin x}}{{\sqrt {\cos x} }}\).

Chọn: D


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay