Câu hỏi

Trong mặt phẳng Oxy cho các điểm \(E\left( {3; - 2} \right);\,\,F\left( { - 1; - 3} \right)\). Tìm tọa độ điểm G thuộc trục hoành sao cho G thuộc đường thẳng EF.

  • A  \(G\left( { - \dfrac{{11}}{5};0} \right)\)                           
  • B  \(G\left( {11;0} \right)\)         
  • C  \(G\left( {0; - \dfrac{{11}}{4}} \right)\)                           
  • D  \(G\left( {0; - \dfrac{{11}}{2}} \right)\)

Phương pháp giải:

Viết phương trình đường thẳng EF.

Lời giải chi tiết:

Gọi phương trình đường thẳng EF là \(y = ax + b\) ta có :

\(\left\{ \begin{array}{l}E \in EF\\F \in EF\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3a + b =  - 2\\ - a + b =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{4}\\b =  - \dfrac{{11}}{4}\end{array} \right. \Leftrightarrow EF:\,\,y = \dfrac{1}{4}x - \dfrac{{11}}{4}\).

\(G \in Ox;\,\,G \in EF \Rightarrow \) tọa độ điểm G là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}y = 0\\y = \dfrac{1}{4}x - \dfrac{{11}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = 11\end{array} \right. \Rightarrow G\left( {11;0} \right)\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay