Câu hỏi
Hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}m{x^2} + \frac{1}{2}\) đạt cực tiểu tại \(x = 2\) khi m nhận giá trị nào sau đây?
- A \(m = 2\)
- B \(m = 4\)
- C \(m = 1\)
- D \(m = 3\)
Phương pháp giải:
Hàm số đạt cực tiểu tại \(x = 2 \Leftrightarrow \left\{ \begin{array}{l}y'\left( 2 \right) = 0\\y''\left( 2 \right) > 0\end{array} \right.\).
Lời giải chi tiết:
Ta có: \(y' = {x^2} - mx;\,\,y'' = 2x - m\)
Hàm số đạt cực tiểu tại \(x = 2 \Leftrightarrow \left\{ \begin{array}{l}y'\left( 2 \right) = 0\\y''\left( 2 \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 - 2m = 0\\4 - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2\\m < 4\end{array} \right. \Leftrightarrow m = 2\).
Chọn A.