Câu hỏi
Cho bất phương trình \({x^2} + 4x + 3 + m \le 0\) . Với giá trị nào của m thì bất phương trình có nghiệm là một đoạn có độ dài bằng 2:
- A \(m = 1\)
- B \(m = 0\)
- C \(m = 3\)
- D \(m = - 3\)
Lời giải chi tiết:
Để bất phương trình có nghiệm là một đoạn trên trục số có độ dài bằng 2 thì tam thức ở vế trái của bất phương trình phải có hai nghiệm phân biệt x1 và x2 thoả mãn \(\left| {{x_1} - {x_2}} \right| = 2\)
Tức là:
\(\left\{ \begin{array}{l}\Delta ' > 0\\\left| {\frac{{2\sqrt {{\Delta'}} }}{a}} \right| = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 - m > 0\\\sqrt {1 - m} = 1\end{array} \right. \Leftrightarrow m = 0\)
Chọn B.


