Câu hỏi
Một sóng cơ lan truyền trên một đường thẳng từ điểm O đến điểm M cách O một đoạn là d. Biết tần số f, bước sóng λ và biên độ a của sóng không đổi trong quá trình sóng truyền. Nếu phương trình dao động của phần tử vật chất tại điểm M có dạng uM (t) = asin2πft thì phương trình dao động của phần tử vật chất tại O là:
- A ${u_O}\left( t \right) = asin2\pi \left( {ft - \frac{d}{\lambda }} \right)$
- B ${u_O}\left( t \right) = asin2\pi \left( {ft + \frac{d}{\lambda }} \right)$
- C ${u_O}\left( t \right) = asin\pi \left( {ft - \frac{d}{\lambda }} \right)$
- D ${u_O}\left( t \right) = asin\pi \left( {ft + \frac{d}{\lambda }} \right)$
Phương pháp giải:
Phương pháp : Áp dụng phương trình sóng tại điểm M cách nguồn O một khoảng d
${u_M} = {U_0}\cos \left( {2\pi ft - \frac{{2\pi d}}{\lambda }} \right)$
Lời giải chi tiết:
Gọi phương trình sóng tại nguồn O có dạng uM (t) = asin(2πft)
O dao động sớm pha hơn M một góc: \(\varphi = {{2\pi d} \over \lambda }\)
Vậy phương trình sóng tại nguồn O có dạng :
\({u_{\left( O \right)}}\left( t \right) = a\sin \left( {2\pi ft + {{2\pi d} \over \lambda }} \right) = a\sin 2\pi \left( {ft + {d \over \lambda }} \right)\)
Đáp án B