Câu hỏi
Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A(a;0;0)\), \(B(0;b;0)\), \(C(0;0;c)\) với
a,b,c là các số thực dương thay đổi tùy ý sao cho \({a^2} + {b^2} + {c^2} = 3\). Khoảng cách từ \(O\) đến mặt
phẳng \((ABC)\) lớn nhất bằng:
- A \(\frac{1}{3}\)
- B 3
- C \(\frac{1}{{\sqrt 3 }}\)
- D 1
Phương pháp giải:
+) Viết phương trình mặt phẳng \(\left( {ABC} \right)\) dạng đoạn chắn.
+) Tính khoảng cách từ O đến mặt phẳng \(\left( {ABC} \right)\).
+) Sử dụng BĐT Buniacopxki tìm GTLN của biểu thức \(d\left( {O;\left( {ABC} \right)} \right)\).
Lời giải chi tiết:
Phương trình mặt phẳng \(\left( {ABC} \right):\,\,\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
\( \Rightarrow d\left( {O;\left( {ABC} \right)} \right) = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }}\) lớn nhất \( \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) nhỏ nhất.
Áp dụng BĐT Buniacopxki ta có: \(\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)\left( {{a^2} + {b^2} + {c^2}} \right) \ge {3^2} = 9\)
\( \Leftrightarrow 3.\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right) \ge 9 \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge 3\)
\( \Rightarrow d\left( {O;\left( {ABC} \right)} \right) \le \frac{1}{{\sqrt 3 }}\).
Chọn đáp án C.