Câu hỏi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số đường cong trong hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình \(\left| {f\left( x \right)} \right| = m\) có 4 nghiệm phân biệt.

  • A  \(m \in \left\{ {0;3} \right\}\).                                                
  • B  \( - 3 < m < 1\).
  • C Không có giá trị nào của m.   
  • D  \(1 < m < 3\).

Phương pháp giải:

Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m\) bằng số giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đường thẳng \(y = m\).

Lời giải chi tiết:

 

Từ đồ thị hàm số \(y = f\left( x \right)\) ta có đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) như hình bên:

Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m\) bằng số giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đường thẳng \(y = m\)

\( \Rightarrow \)Để phương trình \(\left| {f\left( x \right)} \right| = m\) có 4 nghiệm phân biệt thì \(1 < m < 3\).

Chọn: D


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay