Câu hỏi

Các tiệm cận của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là

  • A  \(x = 1,\,\,y =  - 1\).                
  • B  \(x = 2,\,\,y = 1\).                   
  • C \(x =  - \frac{1}{2},\,\,y = 1\).             
  • D  \(x = 1,\,\,y = 2\).

Phương pháp giải:

Đồ thị hàm số bậc nhất trên bậc nhất \(y = \frac{{ax + b}}{{cx + d}},\,\left( {a,c \ne 0,\,\,\,ad - bc \ne 0} \right)\) có tiệm cận đứng là \(x =  - \frac{d}{c}\), tiệm cận ngang là\(y = \frac{a}{c}\) .

Lời giải chi tiết:

Các tiệm cận của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là \(x = 1,\,\,y = 2\).

Chọn: D


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay