Câu hỏi
Đồ thị hàm số \(y = \frac{{2x + 1}}{{4 - {x^2}}}\) có bao nhiêu tiệm cận?
- A 3
- B 1
- C 2
- D 4
Phương pháp giải:
* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.
* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \,\)thì \(x = a\)
là TCĐ của đồ thị hàm số.
Lời giải chi tiết:
Tập xác định: \(D = R{\rm{\backslash }}\left\{ { - 2;2} \right\}\)
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \frac{{2x + 1}}{{4 - {x^2}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{2}{x} + \frac{1}{{{x^2}}}}}{{\frac{4}{{{x^2}}} - 1}} = 0 \Rightarrow \)Đồ thị hàm số có 1 tiệm cận ngang là \(y = 0\)
\(\mathop {\lim }\limits_{x \to - {2^ - }} y = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{4 - {x^2}}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to - {2^ + }} y = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2x + 1}}{{4 - {x^2}}} = - \infty ,\,\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x + 1}}{{4 - {x^2}}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{4 - {x^2}}} = - \infty \)
\( \Rightarrow \) Đồ thị hàm số có 2 tiệm cận đứng là \(x = 2,\,\,x = - 2\).
Chọn: A