Câu hỏi
Cho \(\left( {{C_m}} \right):\,\,y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.
- A \(S = \frac{8}{3}\)
- B \(S = 7\)
- C \(S = 6\)
- D \(S = \frac{2}{3}\)
Phương pháp giải:
Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình đó có 2 nghiệm phân biệt.
Lời giải chi tiết:
Xét phương trình hoành độ giao điểm \(2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4 = 0\,\,\,\left( 1 \right)\)
\( \Leftrightarrow \left( {x - 2} \right)\left( {2{x^2} + \left( {1 - 3m} \right)x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\2{x^2} + \left( {1 - 3m} \right)x + 2 = 0\,\,\,\left( * \right)\end{array} \right.\)
Để đồ thị \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox \( \Rightarrow \) Phương trình (1) có 2 nghiệm phân biệt.
TH1: (*) có 2 nghiệm phân biệt trong đó có một nghiệm \(x = 2\)
\( \Rightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} - 8 > 0\\8 + 2\left( {1 - 3m} \right) + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} > 8\\m = 2\end{array} \right.\,\,\left( {tm} \right)\)
TH2: (*) có nghiệm duy nhất khác 2.
\( \Rightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} - 8 = 0\\8 + 2\left( {1 - 3m} \right) + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} = 8\\m \ne 2\end{array} \right. \Leftrightarrow 1 - 3m = \pm 2\sqrt 2 \Leftrightarrow m = \frac{{1 \mp 2\sqrt 2 }}{3}\)
\(\begin{array}{l} \Rightarrow S = \left\{ {2;\frac{{1 - 2\sqrt 2 }}{3};\frac{{1 + 2\sqrt 2 }}{3}} \right\}\\ \Rightarrow 2 + \frac{{1 - 2\sqrt 2 }}{3} + \frac{{1 + 2\sqrt 2 }}{3} = \frac{8}{3}\end{array}\)
Chọn A.