Câu hỏi
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
- A \(d = 5\sqrt 2 \)
- B \(d = 4\sqrt 5 \)
- C \(d = 2\sqrt 5 \)
- D \(d = \sqrt 5 \)
Phương pháp giải:
+) Giải phương trình \(y' = 0\) tìm các điểm cực trị của hàm số
+) Tính khoảng cách giữa hai điểm cực trị.
Lời giải chi tiết:
TXĐ: \(D = R\backslash \left\{ 1 \right\}\)
Ta có: \(y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}} \Rightarrow y' = 1 - \frac{1}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = - 1\\x = 2 \Rightarrow y = 3\end{array} \right.\)
\( \Rightarrow \) Hai điểm cực trị của đồ thị hàm số là \(A\left( {0; - 1} \right);\,\,B\left( {2;3} \right) \Rightarrow AB = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \)
Chọn C.