Câu hỏi

Cho hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ bên dưới đây:

Tìm số điểm cực trị của hàm số \(y={{e}^{2f\left( x \right)+1}}+{{5}^{f\left( x \right)}}\).

  • A 1
  • B 2
  • C 4
  • D 3

Phương pháp giải:

Số điểm cực trị của hàm số \(y=f\left( x \right)\) là số nghiệm của phương trình \(f'\left( x \right)=0\) mà qua đó \(f'\left( x \right)\) đổi dấu.

Lời giải chi tiết:

Ta có \(y'=2f'\left( x \right).{{e}^{2f\left( x \right)+1}}+f'\left( x \right){{.5}^{f\left( x \right)}}=f'\left( x \right)\left[ 2{{e}^{2f\left( x \right)+1}}+{{5}^{f\left( x \right)}} \right]=0\)

Vì \(2{{e}^{2f\left( x \right)+1}}+{{5}^{f\left( x \right)}}>0\,\,\forall x\Rightarrow y'=0\Leftrightarrow f'\left( x \right)=0\Rightarrow \) Số điểm cực trị của hàm số \(y={{e}^{2f\left( x \right)+1}}+{{5}^{f\left( x \right)}}\) bằng số cực trị của hàm số \(y=f\left( x \right)\).

Dựa vào đồ thị hàm số \(y=f'\left( x \right)\) ta thấy hàm số \(y=f\left( x \right)\) có 3 điểm cực trị.

Vậy hàm số \(y={{e}^{2f\left( x \right)+1}}+{{5}^{f\left( x \right)}}\) cũng có 3 điểm cực trị.

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay