Câu hỏi

Giá trị lớn nhất của \(y=-{{x}^{4}}+4{{x}^{2}}\) trên đoạn \(\left[ -1;2 \right]\) bằng:

  • A 1
  • B 4
  • C 5
  • D 3

Phương pháp giải:

Phương pháp tìm GTLN, GTNN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;b \right]\).

+) Giải phương trình \(y'=0\Rightarrow \) các nghiệm \({{x}_{i}}\in \left[ a;b \right]\).

+) Tính các giá trị \(f\left( a \right);f\left( b \right);f\left( {{x}_{i}} \right)\).

+) So sánh và kết luận: \(\underset{\left[ a;b \right]}{\mathop{\max }}\,f\left( x \right)=\max \left\{ f\left( a \right);f\left( b \right);f\left( {{x}_{i}} \right) \right\};\underset{\left[ a;b \right]}{\mathop{\min }}\,f\left( x \right)=\min \left\{ f\left( a \right);f\left( b \right);f\left( {{x}_{i}} \right) \right\}\)

Lời giải chi tiết:

TXĐ: \(D=R\).

Ta có

\(\begin{array}{l}y' =  - 4{x^3} + 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - 1;2} \right]\\x = \sqrt 2  \in \left[ { - 1;2} \right]\\x =  - \sqrt 2  \notin \left[ { - 1;2} \right]\end{array} \right.\\y\left( 0 \right) = 0;y\left( {\sqrt 2 } \right) = 4;y\left( { - 1} \right) = 3;y\left( 2 \right) = 0 \Rightarrow \mathop {\max }\limits_{\left[ {a;b} \right]} y = 4\end{array}\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay