Câu hỏi

Giá trị nhỏ nhất của hàm số \(y=2{{x}^{3}}+3{{x}^{2}}-12x+2\) trên đoạn \(\left[ -\,1;2 \right]\) đạt tại \(x={{x}_{0}}.\) Giá trị \({{x}_{0}}\) bằng bao nhiêu ? 

  • A 2
  • B 1
  • C \(-\,2.\)
  • D  \(-\,1.\)

Phương pháp giải:

Khảo sát hàm số trên đoạn để tìm giá trị nhỏ nhất – giá trị lớn nhất

Lời giải chi tiết:

Xét hàm số \(f\left( x \right)=2{{x}^{3}}+3{{x}^{2}}-12x+2\) trên \(\left[ -\,1;2 \right],\) có \({f}'\left( x \right)=6{{x}^{2}}+6x-12;\,\,\forall x\in \mathbb{R}.\)

Phương trình \({f}'\left( x \right)=0\Leftrightarrow 6{{x}^{2}}+6x-12=0\Leftrightarrow \ \left[ \begin{align} & x=1\ \ \ \in \left[ -1;\ 2 \right] \\ & x=-2\ \ \notin \left[ -1;\ 2 \right] \\ \end{align} \right..\)

Tính \(f\left( -\,1 \right)=15;\,\,f\left( 1 \right)=-\,5;\,\,f\left( 2 \right)=6.\)

Do đó, hàm số đạt giá trị nhỏ nhất là \(-\,5.\) Xảy ra khi \(x=1.\)

Chọn B


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay