Câu hỏi
Cho \(f\left( x \right)=\frac{x}{{{\cos }^{2}}x}\) trên \(\left( -\frac{\pi }{2};\frac{\pi }{2} \right)\) và \(F\left( x \right)\) là một nguyên hàm của hàm số \(xf'\left( x \right)\) thỏa mãn \(F\left( 0 \right)=0\). Biết \(a\in \left( -\frac{\pi }{2};\frac{\pi }{2} \right)\) thỏa mãn \(\tan a=3\). Tính \(F\left( a \right)-10{{a}^{2}}+3a\).
- A
\(\frac{1}{2}\ln 10\)
- B
\(-\frac{1}{4}\ln 10\)
- C
\(-\frac{1}{2}\ln 10\)
- D \(\ln 10\)
Phương pháp giải:
Sử dụng phương pháp tích phân từng phần tính \(F\left( x \right)\).
Lời giải chi tiết:
Theo bài ra ta có: \(F\left( x \right) = \int {xf\left( x \right)dx} \).
Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\).
Khi đó ta có:
\(\begin{array}{*{20}{l}}\begin{array}{l}F\left( x \right) = x.f\left( x \right) - \int {f\left( x \right)dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{x^2}}}{{{{\cos }^2}x}} - \int\limits_{}^{} {\frac{x}{{{{\cos }^2}x}}dx} + C\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{x^2}}}{{{{\cos }^2}x}} - \int\limits_{}^{} {xd\left( {\tan x} \right)} + C\end{array}\\\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{x^2}}}{{{{\cos }^2}x}} - x\tan x + \int\limits_{}^{} {\tan dx} + C\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{x^2}}}{{{{\cos }^2}x}} - x\tan x + \int\limits_{}^{} {\frac{{\sin x}}{{\cos x}}dx} + C\end{array}\\\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{x^2}}}{{{{\cos }^2}x}} - x\tan x - \int\limits_{}^{} {\frac{{d\left( {\cos x} \right)}}{{\cos x}}} + C\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{x^2}}}{{{{\cos }^2}x}} - x\tan x - \ln \left| {\cos x} \right| + C\end{array}\\{F\left( 0 \right) = C = 0 \Rightarrow F\left( x \right) = \frac{{{x^2}}}{{{{\cos }^2}x}} - x\tan x - \ln \left| {\cos x} \right|}\\{F\left( x \right) = \int\limits_{}^{} {xf'\left( x \right)dx} = \int\limits_{}^{} {xd\left( {f\left( x \right)} \right)} = xf\left( x \right) - \int\limits_{}^{} {f\left( x \right)dx} + C}\\\begin{array}{l}\tan a = 3 \Rightarrow \frac{1}{{{{\cos }^2}a}} = {\tan ^2}a + 1 = 10\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \cos a = \frac{1}{{\sqrt {10} }}\left( {a \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)} \right)\end{array}\end{array}\)
\(\begin{array}{l} \Rightarrow F\left( a \right) = 10{a^2} - 3a - \ln \frac{1}{{\sqrt {10} }}\\ \Rightarrow F\left( a \right) - 10{a^2} + 3a = - \ln \frac{1}{{\sqrt {10} }} = - \frac{1}{2}\ln \frac{1}{{10}} = \frac{1}{2}\ln 10\end{array}\)
Chọn A.