Môn Toán - Lớp 12
40 bài tập trắc nghiệm sự đồng biến nghịch biến của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Có bao nhiêu giá trị nguyên của \(m\in (-10;10)\) để hàm số \(y={{m}^{2}}{{x}^{4}}-2\left( 4m-1 \right){{x}^{2}}+1\) đồng biến trên khoảng \((1;\,\,+\infty )\)?
- A 15
- B 7
- C 16
- D 6
Phương pháp giải:
Để hàm số đồng biến trên \(\left( 1;+\infty \right)\Rightarrow y'\ge 0\,\,\forall x\in \left( 1;+\infty \right)\) và \(y'=0\) tại hữu hạn điểm thuộc \(\left( 1;+\infty \right)\)
Lời giải chi tiết:
Ta có \(y'=4{{m}^{2}}{{x}^{3}}-4\left( 4m-1 \right)x=4x\left( {{m}^{2}}{{x}^{2}}-4m+1 \right).\)
Để hàm số đồng biến trên \(\left( 1;+\infty \right)\Leftrightarrow y'\ge 0,\text{ }\forall x\in \left( 1;+\infty \right)\Leftrightarrow {{m}^{2}}{{x}^{2}}-4m+1\ge 0,\text{ }\forall x\in \left( 1;+\infty \right)\) (1)
Rõ ràng \(m=0\) thỏa mãn (1).
Với \(m\ne 0\) thì (1) \( \Leftrightarrow {x^2} \ge \frac{{4m - 1}}{{{m^2}}}\,\,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow \frac{{4m - 1}}{{{m^2}}} \le 1 \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
{m^2} - 4m + 1 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
\left[ \begin{array}{l}
m \ge 2 + \sqrt 3 \\
m \le 2 - \sqrt 3
\end{array} \right.
\end{array} \right.\)
Vậy có 16 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn C.