Câu hỏi

Cho tứ diện đều \(ABCD.\) Khi tăng độ dài cạnh tứ diện đều lên 2 lần, khi đó thể tích của khối tứ diện đều tăng lên bao nhiêu lần ?

  • A 6
  • B 8
  • C 4
  • D 2

Phương pháp giải:

Dựa vào công thức tính nhanh thể tích của tứ diện đều với 1 cạnh bất kỳ a.

Lời giải chi tiết:

Thể tích khối tứ diện đều \(ABCD\) cạnh \(a\) là \(V=\frac{{{a}^{3}}\sqrt{2}}{12}.\)

Khi tăng cạnh tứ diện lên 2 lần, thể tích lúc này là \({{V}_{0}}=\frac{{{\left( 2a \right)}^{3}}\sqrt{2}}{12}=\frac{8{{a}^{3}}\sqrt{2}}{12}=8\,\,\times \,\,V.\)

Chọn B


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay