Câu hỏi
Giá trị của biểu thức \(T = {1 \over {\cos x\cos 2x}} + {1 \over {\cos 2x\cos 3x}} + ... + {1 \over {\cos (n - 1)x\cos nx}}\) khi \(n = 2018,\,\,x = {\pi \over 6}\) là:
- A \({4 \over {\sqrt 3 }}\).
- B \( - {4 \over {\sqrt 3 }}\).
- C \(1\)
- D \(-1\)
Phương pháp giải:
Tổng quát:
\(\eqalign{ & {1 \over {\cos kx\cos (k + 1)x}} = {1 \over {\sin \,x}}.{{\sin \,x} \over {\cos kx\cos \left( {k + 1} \right)x}} = {1 \over {\sin \,x}}.{{\sin \,\left[ {\left( {k + 1} \right)x - kx} \right]} \over {\cos kx\cos \left( {k + 1} \right)x}} \cr & = {1 \over {\sin \,x}}.{{\sin \left( {k + 1} \right)x\cos kx - \sin kx\cos \left( {k + 1} \right)x} \over {\cos kx\cos \left( {k + 1} \right)x}} = {1 \over {\sin \,x}}.\left[ {\tan \left( {k + 1} \right)x - \tan kx} \right] \cr} \)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & {1 \over {\cos kx\cos (k + 1)x}} = {1 \over {\sin \,x}}.{{\sin \,x} \over {\cos kx\cos \left( {k + 1} \right)x}} = {1 \over {\sin \,x}}.{{\sin \,\left[ {\left( {k + 1} \right)x - kx} \right]} \over {\cos kx\cos \left( {k + 1} \right)x}} \cr & = {1 \over {\sin \,x}}.{{\sin \left( {k + 1} \right)x\cos kx - \sin kx\cos \left( {k + 1} \right)x} \over {\cos kx\cos \left( {k + 1} \right)x}} = {1 \over {\sin \,x}}.\left[ {\tan \left( {k + 1} \right)x - \tan kx} \right] \cr} \)
\(\eqalign{ & T = {1 \over {\cos x\cos 2x}} + {1 \over {\cos 2x\cos 3x}} + ... + {1 \over {\cos (n - 1)x\cos nx}} \cr & \,\,\,\, = {1 \over {\sin \,x}}\left[ {\tan 2x - \tan \,x + \tan 3x - \tan 2x + .... + \tan \,nx - \tan (n - 1)x} \right] \cr & \,\,\,\, = {1 \over {\sin \,x}}\left[ { - \tan \,x + \tan \,nx} \right] \cr & n = 2018,\,\,x = {\pi \over 6} \cr & \Rightarrow T = {1 \over {\sin \,{\pi \over 6}}}\left[ {\tan \left( {2018.{\pi \over 6}} \right) - \tan {\pi \over 6}} \right] = {1 \over {\sin \,{\pi \over 6}}}\left[ {\tan \left( {336\pi + {\pi \over 3}} \right) - \tan {\pi \over 6}} \right] = {1 \over {{1 \over 2}}}\left[ {\sqrt 3 - {1 \over {\sqrt 3 }}} \right] = {4 \over {\sqrt 3 }} \cr} \)
Chọn: A.