Câu hỏi
Mệnh đề nào dưới đây đúng?
- A \(\underset{x\,\to -\,\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-x \right)=0.\)
- B \(\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-2x \right)=+\,\infty .\)
- C \(\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-x \right)=\frac{1}{2}.\)
- D \(\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-2x \right)=-\,\infty .\)
Phương pháp giải:
Sử dụng phương pháp nhân liên hợp với giới dạng dạng vô định \(\infty \,\,-\,\,\infty \)
Lời giải chi tiết:
Ta có
+) Đáp án A:
\(\underset{x\to -\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-x \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{\left( \sqrt{{{x}^{2}}+x}-x \right)\left( \sqrt{{{x}^{2}}+x}+x \right)}{\left( \sqrt{{{x}^{2}}+x}+x \right)}=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{x}{\sqrt{{{x}^{2}}+x}+x}=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{1}{-\sqrt{1+\frac{1}{x}}+1}=-\infty .\)
+) Đáp án B: \(\underset{x\to +\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-2x \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\left( \sqrt{{{x}^{2}}+x}-2x \right)\left( \sqrt{{{x}^{2}}+x}+2x \right)}{\left( \sqrt{{{x}^{2}}+x}+2x \right)}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{-3{{x}^{2}}+x}{\sqrt{{{x}^{2}}+x}+2x}=-\infty .\)
+) Đáp án C:\(\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-x \right)=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{\left( \sqrt{{{x}^{2}}+x}-x \right)\left( \sqrt{{{x}^{2}}+x}+x \right)}{\sqrt{{{x}^{2}}+x}+x}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{x}{\sqrt{{{x}^{2}}+x}+x}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{2}.\)
+) Đáp án D: \(\underset{x\to -\infty }{\mathop{\lim }}\,\left( \sqrt{{{x}^{2}}+x}-2x \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{\left( \sqrt{{{x}^{2}}+x}-2x \right)\left( \sqrt{{{x}^{2}}+x}+2x \right)}{\left( \sqrt{{{x}^{2}}+x}+2x \right)}=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{-3{{x}^{2}}+x}{\sqrt{{{x}^{2}}+x}+2x}=+\infty .\)
Chọn C


