Câu hỏi
Phương trình tiếp tuyến của đồ thị hàm số \(y={{x}^{4}}-3{{x}^{2}}+1\) tại các điểm có tung độ bằng \(5\) là
- A
\(y=-\,20x-35;\,\,y=20x+35.\)
- B
\(y=20x-35.\)
- C
\(y=-\,20x+35.\)
- D \(y=-\,20x-35;\,\,y=20x-35.\)
Phương pháp giải:
Sử dụng phương pháp viết phương trình tiếp tuyến của đồ thị hàm số tại điểm
Lời giải chi tiết:
Gọi \(M\left( m;5 \right)\in \left( C \right)\) suy ra \({{m}^{4}}-3{{m}^{2}}+1=5\Leftrightarrow {{m}^{2}}=4\Leftrightarrow m=\pm \,2.\)
Ta có \({y}'=4{{x}^{3}}-6x\,\,\Rightarrow \,\,\left[ \begin{align} {y}'\left( 2 \right)=20 \\ {y}'\left( -\,2 \right)=-\,20 \\ \end{align} \right.\) suy ra phương trình tiếp tuyến cần tìm là \(\left[ \begin{align} y=20x-35 \\ y=-\,20x-35 \\ \end{align} \right..\)
Chọn D