Câu hỏi
Biết \(\int\limits_{1}^{3}{\frac{1}{2x+3}dx}=m\ln 5+n\ln 3\,\,\left( m,n\in R \right)\). Tính \(P=m-n\)
- A P = 0
- B P = -1
- C \(P=\frac{3}{2}\)
- D \(P=-\frac{3}{2}\)
Phương pháp giải:
\(\int{\frac{1}{ax+b}dx}=\frac{1}{a}\ln \left| ax+b \right|+C\)
Lời giải chi tiết:
\(\begin{array}{l}
\int\limits_1^3 {\frac{1}{{2x + 3}}dx} = \left. {\frac{1}{2}\ln \left| {2x + 3} \right|} \right|_1^3\\
= \frac{1}{2}\left( {\ln 9 - \ln 5} \right) = \ln 3 - \frac{1}{2}\ln 5\\
\Rightarrow n = 1;\,\,\,m = - \frac{1}{2}\\
\Rightarrow P = m - n = - \frac{1}{2} - 1 = - \frac{3}{2}
\end{array}\)
Chọn D.