Câu hỏi

Cho hàm số \(y=f\left( x \right)\)có \(\underset{x\to +\infty }{\mathop{\lim }}\,f\left( x \right)=1\)và\(\underset{x\to -\infty }{\mathop{\lim }}\,f\left( x \right)=-1\). Khẳng định nào đúng.

  • A Đồ thị hàm số đã cho có hai tiệm cận ngang \(x=1\)và \(x=-1\).
  • B Đồ thị hàm số đã cho có đúng một tiệm cận ngang.
  • C Đồ thị hàm số đã cho không có tiệm cận ngang.
  • D Đồ thị hàm số đã cho có hai tiệm cận ngang\(y=1\)và \(y=-1\).

Phương pháp giải:

Áp dụng định nghĩa tiệm cận ngang trong sách giáo khoa giải tích 12 cơ bản.

\(\underset{x\to +\infty }{\mathop{\lim }}\,f\left( x \right)=a\) nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=a\).

\(\underset{x\to -\infty }{\mathop{\lim }}\,f\left( x \right)=b\) nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=b\).

Lời giải chi tiết:

Vì \(\underset{x\to +\infty }{\mathop{\lim }}\,f\left( x \right)=1\)nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=1\).

Vì \(\underset{x\to -\infty }{\mathop{\lim }}\,f\left( x \right)=-1\)nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=-1\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay