Câu hỏi
Phương trình nào sau đây là phương trình đường tròn?
- A \({{x}^{2}}+2{{y}^{2}}-4x-8y+1=0\)
- B \(4{{x}^{2}}+{{y}^{2}}-10x-6y-2=0\)
- C \({{x}^{2}}+{{y}^{2}}-2x-8y+20=0\)
- D \({{x}^{2}}+{{y}^{2}}-4x+6y-12=0\)
Phương pháp giải:
Phương trình đường tròn có dạng \({{x}^{2}}+{{y}^{2}}+2ax+2by+c=0\) với các hệ số \(a,b,c\) thỏa mãn điều kiện \({{a}^{2}}+{{b}^{2}}>c\)
Lời giải chi tiết:
\({{x}^{2}}+2{{y}^{2}}-4x-8y+1=0\) không phải là phương trình đường tròn. Vì \({{x}^{2}}:{{y}^{2}}=1:2\ne 1:2\) \(4{{x}^{2}}+{{y}^{2}}-10x-6y-2=0\) không phải là phương trình đường tròn. Vì \({{x}^{2}}:{{y}^{2}}=4:1\ne 1:2\) \({{x}^{2}}+{{y}^{2}}-2x-8y+20=0\)có \(a=1\,\,,b=4,\,\,c=20\). Ta thấy \(a,b,c\)không thỏa mãn điều kiện \({{a}^{2}}+{{b}^{2}}>c\). Đây không phải là một phương trình đường tròn. \({{x}^{2}}+{{y}^{2}}-4x+6y-12=0\) có \(a=2,\,\,b=-3,\,\,c=-12\). Ta thấy \(a,b,c\) thỏa mãn điều kiện \({{a}^{2}}+{{b}^{2}}>c\). Đây là một phương trình đường tròn.
Chọn D.